Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus)
Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a larg...
| Autores principales: | , , , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2021
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/116803 |
| _version_ | 1855527336299986944 |
|---|---|
| author | Bengoa Luoni, Sofia A. Cenci, Alberto Moschen, Sebastian Nicosia, Salvador Radonic, Laura M. Sabio Garcia, Julia Langlade, Nicolas B. Vile, Denis Vázquez Rovere, Cecilia Fernandez, Paula |
| author_browse | Bengoa Luoni, Sofia A. Cenci, Alberto Fernandez, Paula Langlade, Nicolas B. Moschen, Sebastian Nicosia, Salvador Radonic, Laura M. Sabio Garcia, Julia Vile, Denis Vázquez Rovere, Cecilia |
| author_facet | Bengoa Luoni, Sofia A. Cenci, Alberto Moschen, Sebastian Nicosia, Salvador Radonic, Laura M. Sabio Garcia, Julia Langlade, Nicolas B. Vile, Denis Vázquez Rovere, Cecilia Fernandez, Paula |
| author_sort | Bengoa Luoni, Sofia A. |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower. |
| format | Journal Article |
| id | CGSpace116803 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2021 |
| publishDateRange | 2021 |
| publishDateSort | 2021 |
| publisher | Springer |
| publisherStr | Springer |
| record_format | dspace |
| spelling | CGSpace1168032025-12-08T09:54:28Z Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) Bengoa Luoni, Sofia A. Cenci, Alberto Moschen, Sebastian Nicosia, Salvador Radonic, Laura M. Sabio Garcia, Julia Langlade, Nicolas B. Vile, Denis Vázquez Rovere, Cecilia Fernandez, Paula senescence transcription factors phylogenetic analysis plant breeding avejentamiento factores de transcripción análisis filogenético helianthus annuus Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower. 2021-12 2021-12-16T15:58:34Z 2021-12-16T15:58:34Z Journal Article https://hdl.handle.net/10568/116803 en Open Access application/pdf Springer Bengoa Luoni, S.A.; Cenci, A.; Moschen, S.; Nicosia, S.; Radonic, L.M.; Sabio Garcia, J.; Langlade, N.B.; Vile, D.; Vazquez Rovere, C.; Fernandez, P. (2021) Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus). BMC Genomics 22: 893. 19 p. ISSN: 1471-2164 |
| spellingShingle | senescence transcription factors phylogenetic analysis plant breeding avejentamiento factores de transcripción análisis filogenético helianthus annuus Bengoa Luoni, Sofia A. Cenci, Alberto Moschen, Sebastian Nicosia, Salvador Radonic, Laura M. Sabio Garcia, Julia Langlade, Nicolas B. Vile, Denis Vázquez Rovere, Cecilia Fernandez, Paula Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title | Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title_full | Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title_fullStr | Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title_full_unstemmed | Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title_short | Genome-wide and comparative phylogenetic analysis of senescence-associated NAC transcription factors in sunflower (Helianthus annuus) |
| title_sort | genome wide and comparative phylogenetic analysis of senescence associated nac transcription factors in sunflower helianthus annuus |
| topic | senescence transcription factors phylogenetic analysis plant breeding avejentamiento factores de transcripción análisis filogenético helianthus annuus |
| url | https://hdl.handle.net/10568/116803 |
| work_keys_str_mv | AT bengoaluonisofiaa genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT cencialberto genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT moschensebastian genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT nicosiasalvador genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT radoniclauram genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT sabiogarciajulia genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT langladenicolasb genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT viledenis genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT vazquezroverececilia genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus AT fernandezpaula genomewideandcomparativephylogeneticanalysisofsenescenceassociatednactranscriptionfactorsinsunflowerhelianthusannuus |