The future of zoonotic risk prediction

In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization,...

Descripción completa

Detalles Bibliográficos
Autores principales: Carlson, C.J., Farrell, M.J., Grange, Z., Han, B.A., Mollentze, N., Phelan, A.L., Rasmussen, A.L., Albery, G.F., Bett, Bernard K., Brett-Major, D.M., Cohen, L.E., Dallas, T., Eskew, E.A., Fagre, A.C., Forbes, K.M., Gibb, R., Halabi, S., Hammer, C.C., Katz, R., Kindrachuk, J., Muylaert, R.L., Nutter, F.B., Ogola, J., Olival, K.J., Rourke, M., Ryan, S.J., Ross, N., Seifert, S.N., Sironen, T., Standley, C.J., Taylor, K., Venter, M., Webala, P.W.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Royal Society 2021
Materias:
Acceso en línea:https://hdl.handle.net/10568/115078
_version_ 1855539370526769152
author Carlson, C.J.
Farrell, M.J.
Grange, Z.
Han, B.A.
Mollentze, N.
Phelan, A.L.
Rasmussen, A.L.
Albery, G.F.
Bett, Bernard K.
Brett-Major, D.M.
Cohen, L.E.
Dallas, T.
Eskew, E.A.
Fagre, A.C.
Forbes, K.M.
Gibb, R.
Halabi, S.
Hammer, C.C.
Katz, R.
Kindrachuk, J.
Muylaert, R.L.
Nutter, F.B.
Ogola, J.
Olival, K.J.
Rourke, M.
Ryan, S.J.
Ross, N.
Seifert, S.N.
Sironen, T.
Standley, C.J.
Taylor, K.
Venter, M.
Webala, P.W.
author_browse Albery, G.F.
Bett, Bernard K.
Brett-Major, D.M.
Carlson, C.J.
Cohen, L.E.
Dallas, T.
Eskew, E.A.
Fagre, A.C.
Farrell, M.J.
Forbes, K.M.
Gibb, R.
Grange, Z.
Halabi, S.
Hammer, C.C.
Han, B.A.
Katz, R.
Kindrachuk, J.
Mollentze, N.
Muylaert, R.L.
Nutter, F.B.
Ogola, J.
Olival, K.J.
Phelan, A.L.
Rasmussen, A.L.
Ross, N.
Rourke, M.
Ryan, S.J.
Seifert, S.N.
Sironen, T.
Standley, C.J.
Taylor, K.
Venter, M.
Webala, P.W.
author_facet Carlson, C.J.
Farrell, M.J.
Grange, Z.
Han, B.A.
Mollentze, N.
Phelan, A.L.
Rasmussen, A.L.
Albery, G.F.
Bett, Bernard K.
Brett-Major, D.M.
Cohen, L.E.
Dallas, T.
Eskew, E.A.
Fagre, A.C.
Forbes, K.M.
Gibb, R.
Halabi, S.
Hammer, C.C.
Katz, R.
Kindrachuk, J.
Muylaert, R.L.
Nutter, F.B.
Ogola, J.
Olival, K.J.
Rourke, M.
Ryan, S.J.
Ross, N.
Seifert, S.N.
Sironen, T.
Standley, C.J.
Taylor, K.
Venter, M.
Webala, P.W.
author_sort Carlson, C.J.
collection Repository of Agricultural Research Outputs (CGSpace)
description In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
format Journal Article
id CGSpace115078
institution CGIAR Consortium
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher Royal Society
publisherStr Royal Society
record_format dspace
spelling CGSpace1150782025-08-15T13:22:54Z The future of zoonotic risk prediction Carlson, C.J. Farrell, M.J. Grange, Z. Han, B.A. Mollentze, N. Phelan, A.L. Rasmussen, A.L. Albery, G.F. Bett, Bernard K. Brett-Major, D.M. Cohen, L.E. Dallas, T. Eskew, E.A. Fagre, A.C. Forbes, K.M. Gibb, R. Halabi, S. Hammer, C.C. Katz, R. Kindrachuk, J. Muylaert, R.L. Nutter, F.B. Ogola, J. Olival, K.J. Rourke, M. Ryan, S.J. Ross, N. Seifert, S.N. Sironen, T. Standley, C.J. Taylor, K. Venter, M. Webala, P.W. zoonoses health In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’. 2021-11-08 2021-09-21T18:12:24Z 2021-09-21T18:12:24Z Journal Article https://hdl.handle.net/10568/115078 en Open Access Royal Society Carlson, C.J., Farrell, M.J., Grange, Z., Han, B.A., Mollentze, N., Phelan, A.L., Rasmussen, A.L., Albery, G.F., Bett, B., Brett-Major, D.M., Cohen, L.E., Dallas, T., Eskew, E.A., Fagre, A.C., Forbes, K.M., Gibb, R., Halabi, S., Hammer, C.C., Katz, R., Kindrachuk, J., Muylaert, R.L., Nutter, F.B., Ogola, J., Olival, K.J., Rourke, M., Ryan, S.J., Ross, N., Seifert, S.N., Sironen, T., Standley, C.J., Taylor, K., Venter, M. and Webala, P.W. 2021. The future of zoonotic risk prediction. Philosophical Transactions of the Royal Society B: Biological Sciences 376(1837): 20200358.
spellingShingle zoonoses
health
Carlson, C.J.
Farrell, M.J.
Grange, Z.
Han, B.A.
Mollentze, N.
Phelan, A.L.
Rasmussen, A.L.
Albery, G.F.
Bett, Bernard K.
Brett-Major, D.M.
Cohen, L.E.
Dallas, T.
Eskew, E.A.
Fagre, A.C.
Forbes, K.M.
Gibb, R.
Halabi, S.
Hammer, C.C.
Katz, R.
Kindrachuk, J.
Muylaert, R.L.
Nutter, F.B.
Ogola, J.
Olival, K.J.
Rourke, M.
Ryan, S.J.
Ross, N.
Seifert, S.N.
Sironen, T.
Standley, C.J.
Taylor, K.
Venter, M.
Webala, P.W.
The future of zoonotic risk prediction
title The future of zoonotic risk prediction
title_full The future of zoonotic risk prediction
title_fullStr The future of zoonotic risk prediction
title_full_unstemmed The future of zoonotic risk prediction
title_short The future of zoonotic risk prediction
title_sort future of zoonotic risk prediction
topic zoonoses
health
url https://hdl.handle.net/10568/115078
work_keys_str_mv AT carlsoncj thefutureofzoonoticriskprediction
AT farrellmj thefutureofzoonoticriskprediction
AT grangez thefutureofzoonoticriskprediction
AT hanba thefutureofzoonoticriskprediction
AT mollentzen thefutureofzoonoticriskprediction
AT phelanal thefutureofzoonoticriskprediction
AT rasmussenal thefutureofzoonoticriskprediction
AT alberygf thefutureofzoonoticriskprediction
AT bettbernardk thefutureofzoonoticriskprediction
AT brettmajordm thefutureofzoonoticriskprediction
AT cohenle thefutureofzoonoticriskprediction
AT dallast thefutureofzoonoticriskprediction
AT eskewea thefutureofzoonoticriskprediction
AT fagreac thefutureofzoonoticriskprediction
AT forbeskm thefutureofzoonoticriskprediction
AT gibbr thefutureofzoonoticriskprediction
AT halabis thefutureofzoonoticriskprediction
AT hammercc thefutureofzoonoticriskprediction
AT katzr thefutureofzoonoticriskprediction
AT kindrachukj thefutureofzoonoticriskprediction
AT muylaertrl thefutureofzoonoticriskprediction
AT nutterfb thefutureofzoonoticriskprediction
AT ogolaj thefutureofzoonoticriskprediction
AT olivalkj thefutureofzoonoticriskprediction
AT rourkem thefutureofzoonoticriskprediction
AT ryansj thefutureofzoonoticriskprediction
AT rossn thefutureofzoonoticriskprediction
AT seifertsn thefutureofzoonoticriskprediction
AT sironent thefutureofzoonoticriskprediction
AT standleycj thefutureofzoonoticriskprediction
AT taylork thefutureofzoonoticriskprediction
AT venterm thefutureofzoonoticriskprediction
AT webalapw thefutureofzoonoticriskprediction
AT carlsoncj futureofzoonoticriskprediction
AT farrellmj futureofzoonoticriskprediction
AT grangez futureofzoonoticriskprediction
AT hanba futureofzoonoticriskprediction
AT mollentzen futureofzoonoticriskprediction
AT phelanal futureofzoonoticriskprediction
AT rasmussenal futureofzoonoticriskprediction
AT alberygf futureofzoonoticriskprediction
AT bettbernardk futureofzoonoticriskprediction
AT brettmajordm futureofzoonoticriskprediction
AT cohenle futureofzoonoticriskprediction
AT dallast futureofzoonoticriskprediction
AT eskewea futureofzoonoticriskprediction
AT fagreac futureofzoonoticriskprediction
AT forbeskm futureofzoonoticriskprediction
AT gibbr futureofzoonoticriskprediction
AT halabis futureofzoonoticriskprediction
AT hammercc futureofzoonoticriskprediction
AT katzr futureofzoonoticriskprediction
AT kindrachukj futureofzoonoticriskprediction
AT muylaertrl futureofzoonoticriskprediction
AT nutterfb futureofzoonoticriskprediction
AT ogolaj futureofzoonoticriskprediction
AT olivalkj futureofzoonoticriskprediction
AT rourkem futureofzoonoticriskprediction
AT ryansj futureofzoonoticriskprediction
AT rossn futureofzoonoticriskprediction
AT seifertsn futureofzoonoticriskprediction
AT sironent futureofzoonoticriskprediction
AT standleycj futureofzoonoticriskprediction
AT taylork futureofzoonoticriskprediction
AT venterm futureofzoonoticriskprediction
AT webalapw futureofzoonoticriskprediction