Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment

Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data...

Descripción completa

Detalles Bibliográficos
Autores principales: Sousa, Kauê de, Etten, Jacob van, Poland, Jesse A., Fadda, Carlo, Jannink, Jean-Luc, Gebrehawaryat Kidane, Yosef, Lakew, Basazen Fantahun, Mengistu, Dejene Kassahun, Pè, Mario Enrico, Solberg, Svein Øivind, Dell’Acqua, Matteo
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2021
Materias:
Acceso en línea:https://hdl.handle.net/10568/114893
_version_ 1855515589862227968
author Sousa, Kauê de
Etten, Jacob van
Poland, Jesse A.
Fadda, Carlo
Jannink, Jean-Luc
Gebrehawaryat Kidane, Yosef
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
author_browse Dell’Acqua, Matteo
Etten, Jacob van
Fadda, Carlo
Gebrehawaryat Kidane, Yosef
Jannink, Jean-Luc
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Poland, Jesse A.
Pè, Mario Enrico
Solberg, Svein Øivind
Sousa, Kauê de
author_facet Sousa, Kauê de
Etten, Jacob van
Poland, Jesse A.
Fadda, Carlo
Jannink, Jean-Luc
Gebrehawaryat Kidane, Yosef
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
author_sort Sousa, Kauê de
collection Repository of Agricultural Research Outputs (CGSpace)
description Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.
format Journal Article
id CGSpace114893
institution CGIAR Consortium
language Inglés
publishDate 2021
publishDateRange 2021
publishDateSort 2021
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace1148932025-11-11T17:41:35Z Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment Sousa, Kauê de Etten, Jacob van Poland, Jesse A. Fadda, Carlo Jannink, Jean-Luc Gebrehawaryat Kidane, Yosef Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments. 2021-08-19 2021-09-07T08:58:21Z 2021-09-07T08:58:21Z Journal Article https://hdl.handle.net/10568/114893 en https://hdl.handle.net/10568/108545 Open Access application/pdf Springer de Sousa, K.; van Etten, J.; Poland, J.; Fadda, C.; Jannink, J.L.; Gebrehawaryat, Y.; Lakew, B.F.; Mengistu, D.K.; Pè, M.E.; Solberg, S.Ø.; Dell'Acqua, M. (2021) Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment. Communications Biology 4: 944. 9 p. ISSN: 2399-3642
spellingShingle data
abiotic stress
breeding
climate change
biodiversity
participatory research
plant breeding
triticum durum
wheat
estrés abiotico
mejora
cambio climatico
Sousa, Kauê de
Etten, Jacob van
Poland, Jesse A.
Fadda, Carlo
Jannink, Jean-Luc
Gebrehawaryat Kidane, Yosef
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_full Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_fullStr Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_full_unstemmed Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_short Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_sort data driven decentralized breeding increases prediction accuracy in a challenging crop production environment
topic data
abiotic stress
breeding
climate change
biodiversity
participatory research
plant breeding
triticum durum
wheat
estrés abiotico
mejora
cambio climatico
url https://hdl.handle.net/10568/114893
work_keys_str_mv AT sousakauede datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT ettenjacobvan datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT polandjessea datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT faddacarlo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT janninkjeanluc datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT gebrehawaryatkidaneyosef datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT lakewbasazenfantahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT mengistudejenekassahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT pemarioenrico datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT solbergsveinøivind datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT dellacquamatteo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment