Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes
Some of the largest impacts of climate change are expected in the environmentally heterogeneous and species rich high mountain ecosystems. Among those, the Neotropical alpine grassland above the tree line (c. 2,800 m), known as Páramo, is the fastest evolving biodiversity hotspot on earth, and one o...
| Main Authors: | , , , , |
|---|---|
| Format: | Journal Article |
| Language: | Inglés |
| Published: |
Frontiers Media
2020
|
| Subjects: | |
| Online Access: | https://hdl.handle.net/10568/109671 |
| _version_ | 1855518077441015808 |
|---|---|
| author | Valencia Garcia, Jhon Brayan Mesa, Jeison León, Juan G. Madriñán, Santiago Cortés, Andrés J. |
| author_browse | Cortés, Andrés J. León, Juan G. Madriñán, Santiago Mesa, Jeison Valencia Garcia, Jhon Brayan |
| author_facet | Valencia Garcia, Jhon Brayan Mesa, Jeison León, Juan G. Madriñán, Santiago Cortés, Andrés J. |
| author_sort | Valencia Garcia, Jhon Brayan |
| collection | Repository of Agricultural Research Outputs (CGSpace) |
| description | Some of the largest impacts of climate change are expected in the environmentally heterogeneous and species rich high mountain ecosystems. Among those, the Neotropical alpine grassland above the tree line (c. 2,800 m), known as Páramo, is the fastest evolving biodiversity hotspot on earth, and one of the most threatened. Yet, predicting climate responses of typically slow-growing, long-lived plant linages in this unique high mountain ecosystem remains challenging. Here we coupled climate sensitivity modeling and adaptive potential inferences to efficiently assess climate vulnerability of Espeletia, Páramo’s most iconic, predominant and rapidly evolving plant complex. In order to estimate climate sensitivity, we first modeled the distribution of 28 Espeletia taxa under a niche conservatism scenario using altitude and five current (1970–2000) and future (2050 RCP 8.5) bioclimatic variables across 36 different Páramo complexes in the northern Andes (49% of the world’s Páramo area). As an alternative to range shifts via migration, we also computed the adaptive capacity of these Páramo complexes by considering three enhancing factors of the biodiversity’s adaptive potential as well as three environmental limiting factors of the populations’ plastic response. These predictors showed that diverse Páramos in the Eastern Cordillera were more vulnerable likely because the counteracting effects of the adaptive potential (r = −0.93 ± 0.01) were not sufficient to buffer higher distribution losses (r = 0.39 ± 0.01). Agriculture (r = −0.48 ± 0.01), mining (r = −0.36 ± 0.01), and rural population density (r = −0.23 ± 0.01) also weakened the adaptive capacity. These results speak for a limited persistence via migration in the short-term responses of Espeletia to climate change, even though the past population dynamics in concert with glacial cycling is indicative of a predominant role of range shifts. Furthermore, changing climate, together with a general inability to adapt, may eventually constrain the rapid diversification in the Espeletia complex. Our integrative modeling illustrates how future climate may impact plant populations in a mega diverse and highly threatened ecosystem such as the Páramo, and encourages carrying out similar estimates in diverse plant complexes across other high mountain and island-like ecosystems. |
| format | Journal Article |
| id | CGSpace109671 |
| institution | CGIAR Consortium |
| language | Inglés |
| publishDate | 2020 |
| publishDateRange | 2020 |
| publishDateSort | 2020 |
| publisher | Frontiers Media |
| publisherStr | Frontiers Media |
| record_format | dspace |
| spelling | CGSpace1096712025-12-08T10:29:22Z Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes Valencia Garcia, Jhon Brayan Mesa, Jeison León, Juan G. Madriñán, Santiago Cortés, Andrés J. neotropical region biodiversity climate change models región neotropical biodiversidad cambio climático ecology Some of the largest impacts of climate change are expected in the environmentally heterogeneous and species rich high mountain ecosystems. Among those, the Neotropical alpine grassland above the tree line (c. 2,800 m), known as Páramo, is the fastest evolving biodiversity hotspot on earth, and one of the most threatened. Yet, predicting climate responses of typically slow-growing, long-lived plant linages in this unique high mountain ecosystem remains challenging. Here we coupled climate sensitivity modeling and adaptive potential inferences to efficiently assess climate vulnerability of Espeletia, Páramo’s most iconic, predominant and rapidly evolving plant complex. In order to estimate climate sensitivity, we first modeled the distribution of 28 Espeletia taxa under a niche conservatism scenario using altitude and five current (1970–2000) and future (2050 RCP 8.5) bioclimatic variables across 36 different Páramo complexes in the northern Andes (49% of the world’s Páramo area). As an alternative to range shifts via migration, we also computed the adaptive capacity of these Páramo complexes by considering three enhancing factors of the biodiversity’s adaptive potential as well as three environmental limiting factors of the populations’ plastic response. These predictors showed that diverse Páramos in the Eastern Cordillera were more vulnerable likely because the counteracting effects of the adaptive potential (r = −0.93 ± 0.01) were not sufficient to buffer higher distribution losses (r = 0.39 ± 0.01). Agriculture (r = −0.48 ± 0.01), mining (r = −0.36 ± 0.01), and rural population density (r = −0.23 ± 0.01) also weakened the adaptive capacity. These results speak for a limited persistence via migration in the short-term responses of Espeletia to climate change, even though the past population dynamics in concert with glacial cycling is indicative of a predominant role of range shifts. Furthermore, changing climate, together with a general inability to adapt, may eventually constrain the rapid diversification in the Espeletia complex. Our integrative modeling illustrates how future climate may impact plant populations in a mega diverse and highly threatened ecosystem such as the Páramo, and encourages carrying out similar estimates in diverse plant complexes across other high mountain and island-like ecosystems. 2020-09 2020-09-28T13:39:16Z 2020-09-28T13:39:16Z Journal Article https://hdl.handle.net/10568/109671 en Open Access application/pdf Frontiers Media Valencia, J.B.; Mesa, J.; León, J.G.; Madriñán, S.; Cortés, A.J. (2020) Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Frontiers in Ecology and Evolution 8:565708. 18 p. ISSN: 2296-701X |
| spellingShingle | neotropical region biodiversity climate change models región neotropical biodiversidad cambio climático ecology Valencia Garcia, Jhon Brayan Mesa, Jeison León, Juan G. Madriñán, Santiago Cortés, Andrés J. Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title | Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title_full | Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title_fullStr | Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title_full_unstemmed | Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title_short | Climate vulnerability assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes |
| title_sort | climate vulnerability assessment of the espeletia complex on paramo sky islands in the northern andes |
| topic | neotropical region biodiversity climate change models región neotropical biodiversidad cambio climático ecology |
| url | https://hdl.handle.net/10568/109671 |
| work_keys_str_mv | AT valenciagarciajhonbrayan climatevulnerabilityassessmentoftheespeletiacomplexonparamoskyislandsinthenorthernandes AT mesajeison climatevulnerabilityassessmentoftheespeletiacomplexonparamoskyislandsinthenorthernandes AT leonjuang climatevulnerabilityassessmentoftheespeletiacomplexonparamoskyislandsinthenorthernandes AT madrinansantiago climatevulnerabilityassessmentoftheespeletiacomplexonparamoskyislandsinthenorthernandes AT cortesandresj climatevulnerabilityassessmentoftheespeletiacomplexonparamoskyislandsinthenorthernandes |