chirps: API Client for the CHIRPS Precipitation Data in R

The chirps package provides functionalities for reproducible analysis in R (R Core Team, 2020) using the CHIRPS (Funk et al., 2015) data. CHIRPS is daily precipitation data set developed by the Climate Hazards Group (Funk et al., 2015) for high resolution precipitation gridded data. Spanning 50◦ S t...

Descripción completa

Detalles Bibliográficos
Autores principales: Sousa, Kauê de, Sparks, Adam H., Ashmall, William, Etten, Jacob van, Solberg, Svein Ø.
Formato: Journal Article
Lenguaje:Inglés
Publicado: Open Journal 2020
Materias:
Acceso en línea:https://hdl.handle.net/10568/108710
_version_ 1855525136826892288
author Sousa, Kauê de
Sparks, Adam H.
Ashmall, William
Etten, Jacob van
Solberg, Svein Ø.
author_browse Ashmall, William
Etten, Jacob van
Solberg, Svein Ø.
Sousa, Kauê de
Sparks, Adam H.
author_facet Sousa, Kauê de
Sparks, Adam H.
Ashmall, William
Etten, Jacob van
Solberg, Svein Ø.
author_sort Sousa, Kauê de
collection Repository of Agricultural Research Outputs (CGSpace)
description The chirps package provides functionalities for reproducible analysis in R (R Core Team, 2020) using the CHIRPS (Funk et al., 2015) data. CHIRPS is daily precipitation data set developed by the Climate Hazards Group (Funk et al., 2015) for high resolution precipitation gridded data. Spanning 50◦ S to 50◦ N (and all longitudes) and ranging from 1981 to nearpresent (normally with a 45 day lag), CHIRPS incorporates 0.05 arc-degree resolution satellite imagery, and in-situ station data to create gridded precipitation time series for trend analysis and seasonal drought monitoring (Funk et al., 2015). Additionally, the package provides the API client for the IMERG (Huffman et al., 2014) and ESI (SERVIR Global, 2019a) data. The Integrated Multi-satelliE Retrievals for GPM (IMERG) data provides near-real time global observations of rainfall at 0.5 arc-degree resolution, which can be used to estimate total rainfall accumulation from storm systems and quantify the intensity of rainfall and flood impacts from tropical cyclones and other storm systems. IMERG is a daily precipitation dataset available from 2015 to near-present. The evaporative stress index (ESI) data describes temporal anomalies in evapotranspiration produced weekly at 0.25 arc-degree resolution for the entire globe (Anderson et al., 2011). The ESI data is based on satellite observations of land surface temperature, which are used to estimate water loss due to evapotranspiration (the sum of evaporation and plant transpiration from the Earth’s land and ocean surface to the atmosphere). The ESI data is available from 2001 to near-present. When using these data sets in publications please cite Funk et al. (2015) for CHIRPS, Huffman et al. (2014)
format Journal Article
id CGSpace108710
institution CGIAR Consortium
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Open Journal
publisherStr Open Journal
record_format dspace
spelling CGSpace1087102025-11-12T05:42:02Z chirps: API Client for the CHIRPS Precipitation Data in R Sousa, Kauê de Sparks, Adam H. Ashmall, William Etten, Jacob van Solberg, Svein Ø. data management data analysis precipitation equipment gestión de datos análisis de datos precipitación atmosférica The chirps package provides functionalities for reproducible analysis in R (R Core Team, 2020) using the CHIRPS (Funk et al., 2015) data. CHIRPS is daily precipitation data set developed by the Climate Hazards Group (Funk et al., 2015) for high resolution precipitation gridded data. Spanning 50◦ S to 50◦ N (and all longitudes) and ranging from 1981 to nearpresent (normally with a 45 day lag), CHIRPS incorporates 0.05 arc-degree resolution satellite imagery, and in-situ station data to create gridded precipitation time series for trend analysis and seasonal drought monitoring (Funk et al., 2015). Additionally, the package provides the API client for the IMERG (Huffman et al., 2014) and ESI (SERVIR Global, 2019a) data. The Integrated Multi-satelliE Retrievals for GPM (IMERG) data provides near-real time global observations of rainfall at 0.5 arc-degree resolution, which can be used to estimate total rainfall accumulation from storm systems and quantify the intensity of rainfall and flood impacts from tropical cyclones and other storm systems. IMERG is a daily precipitation dataset available from 2015 to near-present. The evaporative stress index (ESI) data describes temporal anomalies in evapotranspiration produced weekly at 0.25 arc-degree resolution for the entire globe (Anderson et al., 2011). The ESI data is based on satellite observations of land surface temperature, which are used to estimate water loss due to evapotranspiration (the sum of evaporation and plant transpiration from the Earth’s land and ocean surface to the atmosphere). The ESI data is available from 2001 to near-present. When using these data sets in publications please cite Funk et al. (2015) for CHIRPS, Huffman et al. (2014) 2020-07-01 2020-07-07T10:59:16Z 2020-07-07T10:59:16Z Journal Article https://hdl.handle.net/10568/108710 en Open Access application/pdf Open Journal de Sousa, K.; Sparks, A.H.; Ashmall, W.; van Etten, J.; Solberg, S.Ø. (2020) chirps: API Client for the CHIRPS Precipitation Data in R. Journal of Open Source Software, 5(51), 2419 ISSN: 2475-9066
spellingShingle data management
data analysis
precipitation
equipment
gestión de datos
análisis de datos
precipitación atmosférica
Sousa, Kauê de
Sparks, Adam H.
Ashmall, William
Etten, Jacob van
Solberg, Svein Ø.
chirps: API Client for the CHIRPS Precipitation Data in R
title chirps: API Client for the CHIRPS Precipitation Data in R
title_full chirps: API Client for the CHIRPS Precipitation Data in R
title_fullStr chirps: API Client for the CHIRPS Precipitation Data in R
title_full_unstemmed chirps: API Client for the CHIRPS Precipitation Data in R
title_short chirps: API Client for the CHIRPS Precipitation Data in R
title_sort chirps api client for the chirps precipitation data in r
topic data management
data analysis
precipitation
equipment
gestión de datos
análisis de datos
precipitación atmosférica
url https://hdl.handle.net/10568/108710
work_keys_str_mv AT sousakauede chirpsapiclientforthechirpsprecipitationdatainr
AT sparksadamh chirpsapiclientforthechirpsprecipitationdatainr
AT ashmallwilliam chirpsapiclientforthechirpsprecipitationdatainr
AT ettenjacobvan chirpsapiclientforthechirpsprecipitationdatainr
AT solbergsveinø chirpsapiclientforthechirpsprecipitationdatainr