Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model

We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty ofthe MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs tothe simulation outputs for the cassava development, growth, and yield in contra...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno Cadena, Leidy Patricia, Hoogenboom, Gerrit, Fisher, James Myles, Ramírez Villegas, Julián Armando, Prager, Steven D., Becerra López Lavelle, Luis Augusto, Pypers, Pieter, Mejia de Tafur, Maria Sara, Wallach, Daniel, Muñoz Carpena, Rafael, Asseng, Senthold
Formato: Journal Article
Lenguaje:Inglés
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://hdl.handle.net/10568/107816
_version_ 1855513893339660288
author Moreno Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, James Myles
Ramírez Villegas, Julián Armando
Prager, Steven D.
Becerra López Lavelle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz Carpena, Rafael
Asseng, Senthold
author_browse Asseng, Senthold
Becerra López Lavelle, Luis Augusto
Fisher, James Myles
Hoogenboom, Gerrit
Mejia de Tafur, Maria Sara
Moreno Cadena, Leidy Patricia
Muñoz Carpena, Rafael
Prager, Steven D.
Pypers, Pieter
Ramírez Villegas, Julián Armando
Wallach, Daniel
author_facet Moreno Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, James Myles
Ramírez Villegas, Julián Armando
Prager, Steven D.
Becerra López Lavelle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz Carpena, Rafael
Asseng, Senthold
author_sort Moreno Cadena, Leidy Patricia
collection Repository of Agricultural Research Outputs (CGSpace)
description We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty ofthe MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs tothe simulation outputs for the cassava development, growth, and yield in contrasting environments. We com-pared enhanced Sampling for Uniformity, a qualitative screening method new to crop simulation modeling, andSobol, a quantitative, variance-based method. About 80% of the GSPs contributed to most of the variation inmaximum leaf area index (LAI), yield, and aboveground biomass at harvest. Relative importance of the GSPsvaried between warm and cool temperatures but did not differ between rainfed and no water limitation con-ditions. Interactions between GSPs explained 20% of the variance in simulated outputs. Overall, the most im-portant GSPs were individual node weight, radiation use efficiency, and maximum individual leaf area. Basetemperature for leaf development was more important for cool compared to warm temperatures. Parameteruncertainty had a substantial impact on model predictions in MANIHOT simulations, with the uncertainty 2–5times larger for warm compared to cool temperatures. Identification of important GSPs provides an objectiveway to determine the processes of a simulation model that are critical versus those that have little relevance.
format Journal Article
id CGSpace107816
institution CGIAR Consortium
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Elsevier
publisherStr Elsevier
record_format dspace
spelling CGSpace1078162025-12-08T09:54:28Z Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model Moreno Cadena, Leidy Patricia Hoogenboom, Gerrit Fisher, James Myles Ramírez Villegas, Julián Armando Prager, Steven D. Becerra López Lavelle, Luis Augusto Pypers, Pieter Mejia de Tafur, Maria Sara Wallach, Daniel Muñoz Carpena, Rafael Asseng, Senthold manihot analysis efficiency temperatures cassava We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty ofthe MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs tothe simulation outputs for the cassava development, growth, and yield in contrasting environments. We com-pared enhanced Sampling for Uniformity, a qualitative screening method new to crop simulation modeling, andSobol, a quantitative, variance-based method. About 80% of the GSPs contributed to most of the variation inmaximum leaf area index (LAI), yield, and aboveground biomass at harvest. Relative importance of the GSPsvaried between warm and cool temperatures but did not differ between rainfed and no water limitation con-ditions. Interactions between GSPs explained 20% of the variance in simulated outputs. Overall, the most im-portant GSPs were individual node weight, radiation use efficiency, and maximum individual leaf area. Basetemperature for leaf development was more important for cool compared to warm temperatures. Parameteruncertainty had a substantial impact on model predictions in MANIHOT simulations, with the uncertainty 2–5times larger for warm compared to cool temperatures. Identification of important GSPs provides an objectiveway to determine the processes of a simulation model that are critical versus those that have little relevance. 2020-04 2020-03-19T20:49:53Z 2020-03-19T20:49:53Z Journal Article https://hdl.handle.net/10568/107816 en Open Access Elsevier Moreno-Cadena, L.P.; Hoogenboom, G.; Fisher, J.M.; Ramirez-Villegas, J.; Prager, S.D.; Becerra Lopez-Lavalle, L.A.; Pypers, P.; Mejia de Tafur, M.S.; Wallach, D.; Muñoz-Carpena, R.; Asseng, S. (2020). Importance of genetic parameters and uncertainty of MANIHOT, a newmechanistic cassava simulation model. European Journal of Agronomy ISSN: 1161-0301 14 p.
spellingShingle manihot
analysis
efficiency
temperatures
cassava
Moreno Cadena, Leidy Patricia
Hoogenboom, Gerrit
Fisher, James Myles
Ramírez Villegas, Julián Armando
Prager, Steven D.
Becerra López Lavelle, Luis Augusto
Pypers, Pieter
Mejia de Tafur, Maria Sara
Wallach, Daniel
Muñoz Carpena, Rafael
Asseng, Senthold
Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_full Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_fullStr Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_full_unstemmed Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_short Importance of genetic parameters and uncertainty of MANIHOT, a new mechanistic cassava simulation model
title_sort importance of genetic parameters and uncertainty of manihot a new mechanistic cassava simulation model
topic manihot
analysis
efficiency
temperatures
cassava
url https://hdl.handle.net/10568/107816
work_keys_str_mv AT morenocadenaleidypatricia importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT hoogenboomgerrit importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT fisherjamesmyles importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT ramirezvillegasjulianarmando importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT pragerstevend importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT becerralopezlavelleluisaugusto importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT pyperspieter importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT mejiadetafurmariasara importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT wallachdaniel importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT munozcarpenarafael importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel
AT assengsenthold importanceofgeneticparametersanduncertaintyofmanihotanewmechanisticcassavasimulationmodel