Drivers of Phosphorus Efficiency in Tropical and Subtropical Cropping Systems

Phosphorus (P) is an essential nutrient but is commonly limiting for food production in tropical and subtropical maize cropping. The efficiency of P fertiliser uptake is often low (5–30%) for various site-specific reasons and so identifying the drivers of P efficiency for different systems is impo...

Full description

Bibliographic Details
Main Authors: Das, Bianca, Huth, Neil I., Probert, Merv, Paul, Birthe K., Kihara, Job Maguta, Bolo, Peter Omondi, Rodríguez, Daniel, Herrero, Mario, Schmidt, Susanne
Format: Conference Paper
Language:Inglés
Published: MDPI 2019
Subjects:
Online Access:https://hdl.handle.net/10568/106628
Description
Summary:Phosphorus (P) is an essential nutrient but is commonly limiting for food production in tropical and subtropical maize cropping. The efficiency of P fertiliser uptake is often low (5–30%) for various site-specific reasons and so identifying the drivers of P efficiency for different systems is important. We conducted a sensitivity analysis on the parameters of a well-established cropping systems model (APSIM) for a wide range of soil, crop and management factors to understand their influence on yield. The analysis was conducted for two contrasting maize cropping systems: (a) a high-input, large-scale commercial system in subtropical Queensland, Australia and (b) a low-input, small-holder system in tropical, western Kenya. In Queensland, yield was most sensitive to available P and mineral N supply, and the sensitivity of both increased with in-crop rainfall. Available P was also the most important parameter in Western Kenya, but N supply had much weaker influence due to higher levels of organic matter. Parameters controlling P sorption were more important than other soil parameters at both sites irrespective of seasonal conditions. In conclusion, these results suggest that efforts to improve efficiency of P use by plants need to account for interactions between water and N supply in environments where these are limiting. They also highlight a potential constraint to modelling of these systems as some of the most influential parameters are difficult to measure directly.