Aerial Monitoring of Rice Crop Variables using an UAV Robotic System

This paper presents the integration of an UAV for the autonomous monitoring of rice crops. The system integrates image processing and machine learning algorithms to analyze multispectral aerial imagery. Our approach calculates 8 vegetation indices from the images at each stage of rice growth: vegeta...

Descripción completa

Detalles Bibliográficos
Autores principales: Devia, Carlos Andres, Rojas Bustos, Juan Pablo, Petro, Eliel E., Mondragon, Iván Fernando, Patino, D., Rebolledo, C., Colorado, Julian D.
Formato: Journal Article
Lenguaje:Inglés
Publicado: INSTICC 2019
Materias:
Acceso en línea:https://hdl.handle.net/10568/105568
_version_ 1855531727867346944
author Devia, Carlos Andres
Rojas Bustos, Juan Pablo
Petro, Eliel E.
Mondragon, Iván Fernando
Patino, D.
Rebolledo, C.
Colorado, Julian D.
author_browse Colorado, Julian D.
Devia, Carlos Andres
Mondragon, Iván Fernando
Patino, D.
Petro, Eliel E.
Rebolledo, C.
Rojas Bustos, Juan Pablo
author_facet Devia, Carlos Andres
Rojas Bustos, Juan Pablo
Petro, Eliel E.
Mondragon, Iván Fernando
Patino, D.
Rebolledo, C.
Colorado, Julian D.
author_sort Devia, Carlos Andres
collection Repository of Agricultural Research Outputs (CGSpace)
description This paper presents the integration of an UAV for the autonomous monitoring of rice crops. The system integrates image processing and machine learning algorithms to analyze multispectral aerial imagery. Our approach calculates 8 vegetation indices from the images at each stage of rice growth: vegetative, reproductive and ripening. Multivariable regressions and artificial neural networks have been implemented to model the relationship of these vegetation indices against two crop variables: biomass accumulation and leaf nitrogen concentration. Comprehensive experimental tests have been conducted to validate the setup. The results indicate that our system is capable of estimating biomass and nitrogen with an average correlation of 80% and 78% respectively.
format Journal Article
id CGSpace105568
institution CGIAR Consortium
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher INSTICC
publisherStr INSTICC
record_format dspace
spelling CGSpace1055682025-11-05T17:46:39Z Aerial Monitoring of Rice Crop Variables using an UAV Robotic System Devia, Carlos Andres Rojas Bustos, Juan Pablo Petro, Eliel E. Mondragon, Iván Fernando Patino, D. Rebolledo, C. Colorado, Julian D. rice machine learning aprendizaje electrónico precision agriculture agricultura de precisión image processing tratamiento de imágenes multispectral imagery imágenes multiespectrales This paper presents the integration of an UAV for the autonomous monitoring of rice crops. The system integrates image processing and machine learning algorithms to analyze multispectral aerial imagery. Our approach calculates 8 vegetation indices from the images at each stage of rice growth: vegetative, reproductive and ripening. Multivariable regressions and artificial neural networks have been implemented to model the relationship of these vegetation indices against two crop variables: biomass accumulation and leaf nitrogen concentration. Comprehensive experimental tests have been conducted to validate the setup. The results indicate that our system is capable of estimating biomass and nitrogen with an average correlation of 80% and 78% respectively. 2019 2019-10-29T20:43:15Z 2019-10-29T20:43:15Z Journal Article https://hdl.handle.net/10568/105568 en Open Access application/pdf INSTICC Devia, Carlos Andres; Rojas Bustos, Juan P.; Petro, Eliel E.; Mondragon, Iván F.; Patino, D.; Rebolledo, C. & Colorado, Julian (2019). Aerial Monitoring of Rice Crop Variables using an UAV Robotic System. In: ICINCO 2019 - International Conference on Informatics in Control, Automation and Robotics. 29-31 Jul. Prague, Czech Republic, 1-7 p.
spellingShingle rice
machine learning
aprendizaje electrónico
precision agriculture
agricultura de precisión
image processing
tratamiento de imágenes
multispectral imagery
imágenes multiespectrales
Devia, Carlos Andres
Rojas Bustos, Juan Pablo
Petro, Eliel E.
Mondragon, Iván Fernando
Patino, D.
Rebolledo, C.
Colorado, Julian D.
Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title_full Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title_fullStr Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title_full_unstemmed Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title_short Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
title_sort aerial monitoring of rice crop variables using an uav robotic system
topic rice
machine learning
aprendizaje electrónico
precision agriculture
agricultura de precisión
image processing
tratamiento de imágenes
multispectral imagery
imágenes multiespectrales
url https://hdl.handle.net/10568/105568
work_keys_str_mv AT deviacarlosandres aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT rojasbustosjuanpablo aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT petroeliele aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT mondragonivanfernando aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT patinod aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT rebolledoc aerialmonitoringofricecropvariablesusinganuavroboticsystem
AT coloradojuliand aerialmonitoringofricecropvariablesusinganuavroboticsystem