Modelling rankings in R: the PlackettLuce package

This paper presents the R package PlackettLuce, which implements a generalization of the Plackett–Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of ps...

Descripción completa

Detalles Bibliográficos
Autores principales: Turner, Heather L., Etten, Jacob van, Firth, David, Kosmidis, Ioannis
Formato: Journal Article
Lenguaje:Inglés
Publicado: Springer 2020
Materias:
Acceso en línea:https://hdl.handle.net/10568/105547
_version_ 1855534752202752000
author Turner, Heather L.
Etten, Jacob van
Firth, David
Kosmidis, Ioannis
author_browse Etten, Jacob van
Firth, David
Kosmidis, Ioannis
Turner, Heather L.
author_facet Turner, Heather L.
Etten, Jacob van
Firth, David
Kosmidis, Ioannis
author_sort Turner, Heather L.
collection Repository of Agricultural Research Outputs (CGSpace)
description This paper presents the R package PlackettLuce, which implements a generalization of the Plackett–Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of pseudo-comparisons with a hypothetical item, ensuring that the underlying network of wins and losses between items is always strongly connected. In this way, the worth of each item always has a finite maximum likelihood estimate, with finite standard error. The use of pseudo-comparisons also has a regularization effect, shrinking the estimated parameters towards equal item worth. In addition to standard methods for model summary, PlackettLuce provides a method to compute quasi standard errors for the item parameters. This provides the basis for comparison intervals that do not change with the choice of identifiability constraint placed on the item parameters. Finally, the package provides a method for model-based partitioning using covariates whose values vary between rankings, enabling the identification of subgroups of judges or settings with different item worths. The features of the package are demonstrated through application to classic and novel data sets.
format Journal Article
id CGSpace105547
institution CGIAR Consortium
language Inglés
publishDate 2020
publishDateRange 2020
publishDateSort 2020
publisher Springer
publisherStr Springer
record_format dspace
spelling CGSpace1055472025-11-12T05:46:03Z Modelling rankings in R: the PlackettLuce package Turner, Heather L. Etten, Jacob van Firth, David Kosmidis, Ioannis models classification statistical methods statistics data modelos clasificación análisis estadístico estadísticas datos This paper presents the R package PlackettLuce, which implements a generalization of the Plackett–Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of pseudo-comparisons with a hypothetical item, ensuring that the underlying network of wins and losses between items is always strongly connected. In this way, the worth of each item always has a finite maximum likelihood estimate, with finite standard error. The use of pseudo-comparisons also has a regularization effect, shrinking the estimated parameters towards equal item worth. In addition to standard methods for model summary, PlackettLuce provides a method to compute quasi standard errors for the item parameters. This provides the basis for comparison intervals that do not change with the choice of identifiability constraint placed on the item parameters. Finally, the package provides a method for model-based partitioning using covariates whose values vary between rankings, enabling the identification of subgroups of judges or settings with different item worths. The features of the package are demonstrated through application to classic and novel data sets. 2020-09 2019-10-29T09:05:27Z 2019-10-29T09:05:27Z Journal Article https://hdl.handle.net/10568/105547 en Open Access application/pdf Springer Turner, H.L.; van Etten, J.; Firth, D.; Kosmidis, I. (2020) Modelling rankings in R: the PlackettLuce package. Computational Statistics ISSN: 0943-4062
spellingShingle models
classification
statistical methods
statistics
data
modelos
clasificación
análisis estadístico
estadísticas
datos
Turner, Heather L.
Etten, Jacob van
Firth, David
Kosmidis, Ioannis
Modelling rankings in R: the PlackettLuce package
title Modelling rankings in R: the PlackettLuce package
title_full Modelling rankings in R: the PlackettLuce package
title_fullStr Modelling rankings in R: the PlackettLuce package
title_full_unstemmed Modelling rankings in R: the PlackettLuce package
title_short Modelling rankings in R: the PlackettLuce package
title_sort modelling rankings in r the plackettluce package
topic models
classification
statistical methods
statistics
data
modelos
clasificación
análisis estadístico
estadísticas
datos
url https://hdl.handle.net/10568/105547
work_keys_str_mv AT turnerheatherl modellingrankingsinrtheplackettlucepackage
AT ettenjacobvan modellingrankingsinrtheplackettlucepackage
AT firthdavid modellingrankingsinrtheplackettlucepackage
AT kosmidisioannis modellingrankingsinrtheplackettlucepackage