Structural variants in 3000 rice genomes

Investigation of large structural variants (SVs) is a challenging yet important task in understanding trait differences in highly repetitive genomes. Combining different bioinformatic approaches for SV detection, we analyzed whole-genome sequencing data from 3000 rice genomes and identified 63 milli...

Descripción completa

Detalles Bibliográficos
Autores principales: Fuentes, Roven Rommel, Chebotarov, Dmytro, Duitama, Jorge, Smith, Sean, Hoz, Juan Fernando de la, Mohiyuddin, Marghoob, Wing, Rod A., McNally, Kenneth L., Tatarinova, Tatiana, Grigoriev, Andrey, Mauleon, Ramil, Alexandrov, Nickolai
Formato: Journal Article
Lenguaje:Inglés
Publicado: Cold Spring Harbor Laboratory 2019
Materias:
Acceso en línea:https://hdl.handle.net/10568/100877
_version_ 1855541216450445312
author Fuentes, Roven Rommel
Chebotarov, Dmytro
Duitama, Jorge
Smith, Sean
Hoz, Juan Fernando de la
Mohiyuddin, Marghoob
Wing, Rod A.
McNally, Kenneth L.
Tatarinova, Tatiana
Grigoriev, Andrey
Mauleon, Ramil
Alexandrov, Nickolai
author_browse Alexandrov, Nickolai
Chebotarov, Dmytro
Duitama, Jorge
Fuentes, Roven Rommel
Grigoriev, Andrey
Hoz, Juan Fernando de la
Mauleon, Ramil
McNally, Kenneth L.
Mohiyuddin, Marghoob
Smith, Sean
Tatarinova, Tatiana
Wing, Rod A.
author_facet Fuentes, Roven Rommel
Chebotarov, Dmytro
Duitama, Jorge
Smith, Sean
Hoz, Juan Fernando de la
Mohiyuddin, Marghoob
Wing, Rod A.
McNally, Kenneth L.
Tatarinova, Tatiana
Grigoriev, Andrey
Mauleon, Ramil
Alexandrov, Nickolai
author_sort Fuentes, Roven Rommel
collection Repository of Agricultural Research Outputs (CGSpace)
description Investigation of large structural variants (SVs) is a challenging yet important task in understanding trait differences in highly repetitive genomes. Combining different bioinformatic approaches for SV detection, we analyzed whole-genome sequencing data from 3000 rice genomes and identified 63 million individual SV calls that grouped into 1.5 million allelic variants. We found enrichment of long SVs in promoters and an excess of shorter variants in 5′ UTRs. Across the rice genomes, we identified regions of high SV frequency enriched in stress response genes. We demonstrated how SVs may help in finding causative variants in genome-wide association analysis. These new insights into rice genome biology are valuable for understanding the effects SVs have on gene function, with the prospect of identifying novel agronomically important alleles that can be utilized to improve cultivated rice.
format Journal Article
id CGSpace100877
institution CGIAR Consortium
language Inglés
publishDate 2019
publishDateRange 2019
publishDateSort 2019
publisher Cold Spring Harbor Laboratory
publisherStr Cold Spring Harbor Laboratory
record_format dspace
spelling CGSpace1008772025-03-13T09:45:40Z Structural variants in 3000 rice genomes Fuentes, Roven Rommel Chebotarov, Dmytro Duitama, Jorge Smith, Sean Hoz, Juan Fernando de la Mohiyuddin, Marghoob Wing, Rod A. McNally, Kenneth L. Tatarinova, Tatiana Grigoriev, Andrey Mauleon, Ramil Alexandrov, Nickolai genomes rice Investigation of large structural variants (SVs) is a challenging yet important task in understanding trait differences in highly repetitive genomes. Combining different bioinformatic approaches for SV detection, we analyzed whole-genome sequencing data from 3000 rice genomes and identified 63 million individual SV calls that grouped into 1.5 million allelic variants. We found enrichment of long SVs in promoters and an excess of shorter variants in 5′ UTRs. Across the rice genomes, we identified regions of high SV frequency enriched in stress response genes. We demonstrated how SVs may help in finding causative variants in genome-wide association analysis. These new insights into rice genome biology are valuable for understanding the effects SVs have on gene function, with the prospect of identifying novel agronomically important alleles that can be utilized to improve cultivated rice. 2019-05 2019-04-23T18:23:10Z 2019-04-23T18:23:10Z Journal Article https://hdl.handle.net/10568/100877 en Open Access Cold Spring Harbor Laboratory Fuentes, Roven Rommel; Chebotarov, Dmytro; Duitama, Jorge; Smith, Sean; de la Hoz, Juan Fernando; Mohiyuddin, Marghoob; Wing, Rod A.; McNally, Kenneth L.; Tatarinova, Tatiana; Grigoriev, Andrey; Mauleon, Ramil & Alexandrov, Nickolai (2019). Importance of considering technology growth in impact assessments of climate change on agriculture. Genome Research, 29:1-11 p.
spellingShingle genomes
rice
Fuentes, Roven Rommel
Chebotarov, Dmytro
Duitama, Jorge
Smith, Sean
Hoz, Juan Fernando de la
Mohiyuddin, Marghoob
Wing, Rod A.
McNally, Kenneth L.
Tatarinova, Tatiana
Grigoriev, Andrey
Mauleon, Ramil
Alexandrov, Nickolai
Structural variants in 3000 rice genomes
title Structural variants in 3000 rice genomes
title_full Structural variants in 3000 rice genomes
title_fullStr Structural variants in 3000 rice genomes
title_full_unstemmed Structural variants in 3000 rice genomes
title_short Structural variants in 3000 rice genomes
title_sort structural variants in 3000 rice genomes
topic genomes
rice
url https://hdl.handle.net/10568/100877
work_keys_str_mv AT fuentesrovenrommel structuralvariantsin3000ricegenomes
AT chebotarovdmytro structuralvariantsin3000ricegenomes
AT duitamajorge structuralvariantsin3000ricegenomes
AT smithsean structuralvariantsin3000ricegenomes
AT hozjuanfernandodela structuralvariantsin3000ricegenomes
AT mohiyuddinmarghoob structuralvariantsin3000ricegenomes
AT wingroda structuralvariantsin3000ricegenomes
AT mcnallykennethl structuralvariantsin3000ricegenomes
AT tatarinovatatiana structuralvariantsin3000ricegenomes
AT grigorievandrey structuralvariantsin3000ricegenomes
AT mauleonramil structuralvariantsin3000ricegenomes
AT alexandrovnickolai structuralvariantsin3000ricegenomes