High-Throughput Biomass Estimation in Rice Crops Using UAV Multispectral Imagery
This paper presents a high-throughput method for Above Ground Estimation of Biomass (AGBE) in rice using multispectral near-infrared (NIR) imagery captured at different scales of the crop. By developing an integrated aerial crop monitoring solution using an Unmanned Aerial Vehicle (UAV), our approac...
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | Journal Article |
| Lenguaje: | Inglés |
| Publicado: |
Springer
2019
|
| Materias: | |
| Acceso en línea: | https://hdl.handle.net/10568/100348 |
Ejemplares similares: High-Throughput Biomass Estimation in Rice Crops Using UAV Multispectral Imagery
- Aerial Monitoring of Rice Crop Variables using an UAV Robotic System
- An unmanned aerial vehicle (UAV) technology for estimating leaf N content in rice crops, from multispectral imagery
- Characterization of rice yield based on biomass and SPAD-based leaf nitrogen for large genotype plots
- Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
- Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
- Optimal machine learning algorithms and UAV multispectral imagery for crop phenotypic trait estimation: a comprehensive review and meta-analysis