Search Results - Sense data.

  1. The FLUXNET 20165 dataset and the ONEFlux processing pipeline for eddy covariance data by Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You - Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Riveca, Alessio, van Ingen, Catharine, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Altaf Arain, M., Ardo, Jonas, Arkebauer, Timothy, Arndt, Stefan K., Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Belelli Marchesini, Luca, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D., Bohrer, Gil, Boike, Julia, Bolstad, Paul V., Bonal, Damien, Bonnefond, Jean - Marc, Bowling, David R., Bracho, Rosuel, Brodeur, Jason, Brummer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P., Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Issac, Christensen, Storben, Cleverly, James, Collatti, Alessio, Consalvo, Claudia, Cook, Bruce, Cook, David, Coversolle, Carole, Cremonese, Edoardo, Curtis, Peter, D'Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth, De Cinti, Bruno, de Grandcourt, agnes, De Ligne, Anne, De Oliveira, Raimundo C., Delpierre, Nicolas, Desai, Ankur R., Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim abdalla M., Eugster, Werner, Ewenz, Cacilia M., Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana, Gianelle, Damiano, Gielen, Bert, Gioli, Beniamino, Gitelson, Anatoly, Goded, Ignacio, Goeckede, Mathias, Goldstein, Allen H., Gough, Christopher M., Goulden, Michael L., Graf, Alexander, Griebel, Anne, Gruening, Carsten, Grünwald, Thomas, Hammerle, Albin, Han, Shijie, Han, Xingguo, Hansen, Birger Ulf, Hanson, Chad, Hatakka, Juha, He, Yongtao, Hehn, Markus, Heinesch, Bernard, Hinko-Najera, Nina, Hörtnagl, Lukas, Hutley, Lindsay, Ibrom, Andreas, Ikawa, Hiroki, Jackowicz-Korczynski, Marcin, Janouš, Dalibor, Jans, Wilma, Jassal, Rachhpal, Jiang, Shicheng, Kato, Tomomichi, Khomik, Myroslava, Klatt, Janina, Knohl, Alexander, Knox, Sara, Kobayashi, Hideki, Koerber, Georgia, Kolle, Olaf, Kosugi, Yoshiko, Kotani, Ayumi, Kowalski, Andrew, Kruijt, Bart, Kurbatova, Julia, Kutsch, Werner L., Kwon, Hyojung, Launiainen, Samuli, Laurila, Tuomas, Law, Bev, Leuning, Ray, Li, Yingnian, Liddell, Michael, Limousin, Jean-Marc, Lion, Marryanna, Liska, Adam J., Lohila, Annalea, López-Ballesteros, Ana, López-Blanco, Efrén, Loubet, Benjamin, Loustau, Denis, Lucas-Moffat, Antje, Lüers, Johannes, Ma, Siyan, Macfarlane, Craig, Magliulo, Vincenzo, Maier, Regine, Mammarella, Ivan, Manca, Giovanni, Marcolla, Barbara, Margolis, Hank A., Marras, Serena, Massman, William, Mastepanov, Mikhail, Matamala, Roser, Matthes, Jaclyn Hatala, Mazzenga, Francesco, McCaughey, Harry, McHugh, Ian, McMillan, Andrew M. S., Merbold, Lutz, Meyer, Wayne, Meyers, Tilden, Miller, Scott D., Minerbi, Stefano, Moderow, Uta, Monson, Russell K., Montagnani, Leonardo, Moore, Caitlin E., Moors, Eddy, Moreaux, Virginie, Moureaux, Christine, Munger, J. William, Nakai, Taro, Neirynck, Johan, Nesic, Zoran, Nicolini, Giacomo, Noormets, Asko, Northwood, Matthew, Nosetto, Marcelo Daniel, Nouvellon, Yann, Novick, Kimberly, Oechel, Walter, Olesen, Jørgen Eivind, Ourcival, Jean-Marc, Papuga, Shirley A., Parmentier, Frans-Jan, Paul-Limoges, Eugenie, Pavelka, Marian, Peichl, Matthias, Pendall, Elise, Phillips, Richard P., Pilegaard, Kim, Pirk, Norbert, Posse Beaulieu, Gabriela, Powell, Thomas, Prasse, Heiko, Prober, Suzanne M., Rambal, Serge, Rannik, Üllar, Raz-Yaseef, Naama, Reed, David, Resco de Dios, Victor, Restrepo-Coupe, Natalia, Reverter, Borja R., Roland, Marilyn, Sabbatini, Simone, Sachs, Torsten, Saleska, Scott R., Sánchez-Cañete, Enrique P., Sanchez-Mejia, Zulia M., Schmid, Hans Peter, Schmidt, Marius, Schneider, Karl, Schrader, Frederik, Schroder, Ivan, Scott, Russell L., Sedlák, Pavel, Serrano-Ortíz, Penélope, Shao, Changliang, Shi, Peili, Shironya, Ivan, Siebicke, Lukas, Šigut, Ladislav, Silberstein, Richard, Sirca, Costantino, Spano, Donatella, Steinbrecher, Rainer, Stevens, Robert M., Sturtevant, Cove, Suyker, Andy, Tagesson, Torbern, Takanashi, Satoru, Tang, Yanhong, Tapper, Nigel, Thom, Jonathan, Tiedemann, Frank, Tomassucci, Michele, Tuovinen, Juha-Pekka, Urbanski, Shawn, Valentini, Riccardo, van der Molen, Michiel, van Gorsel, Eva, van Huissteden, Ko, Varlagin, Andrej, Verfaillie, Joseph, Vesala, Timo, Vincke, Caroline, Vitale, Domenico, Vygodskaya, Natalia, Walker, Jeffrey P., Walter-Shea, Elizabeth, Wang, Huimin, Weber, Robin, Westermann, Sebastian, Wille, Christian, Wofsy, Steven, Wohlfahrt, Georg, Wolf, Sebastian, Woodgate, William, Li, Yuelin, Zampedri, Roberto, Zhang, Junhui, Zhou, Guoyi, Zona, Donatella, Agarwal, Deb, Biraud, Sebastien, Torn, Margaret, Papale, Dario

    Published 2020
    Subjects: “…Remote Sensing…”
    Get full text
    Get full text
    Get full text
    Artículo
  2. An algorithm for rapid flood inundation mapping from optical data using a reflectance differencing technique by Amarnath, Giriraj

    Published 2014
    “…The NDSWI-based approach produces the best results for mapping of flood-inundated areas when verified with actual satellite data. Analysis of results reveals that NDSWI has the potential to detect floodwater turbidity, which was verified using principal component analysis. …”
    Get full text
    Journal Article
  3. Irrigated area mapping using AVHRR, MODIS and LANDSAT ETM+ data for the Krishna River Basin, India by Gumma, Murali K., Thenkabail, Prasad S., Gautam, N.C., Gangadhara Rao, Parthasaradhi, Velpuri, Naga Manohar

    Published 2008
    “…However, the irrigation projects do not fulfill the demand in the basin consequently the tail Enders grow dry crops. Remote sensing replaces costly and tedious data collection on the ground, which is non-destructive. …”
    Get full text
    Journal Article
  4. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model by Setiyono, Tri, Quicho, Emma, Gatti, Luca, Campos-Taberner, Manuel, Busetto, Lorenzo, Collivignarelli, Francesco, García-Haro, Francisco, Boschetti, Mirco, Khan, Nasreen, Holecz, Francesco

    Published 2018
    “…The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. …”
    Get full text
    Journal Article
  5. Water productivity mapping methods using remote sensing by Biradar, Chandrashekhar M., Thenkabail, Prasad S., Platonov, Alexander, Xiao, X., Geerken, R., Noojipady, P., Turral, Hugh, Vithanage, Jagath

    Published 2008
    “…The goal of this paper was to develop methods and protocols for water productivity mapping (WPM) using remote sensing data at multiple resolutions and scales in conjunction with field-plot data. …”
    Get full text
    Journal Article
  6. Remote sensing of soil salinity mapping: status and potential by Ayan Das, Bhattacharya, Bimal K., Obi Reddy, G.P., Bhaskar Narjary, Sharma, P.C., Samar Attaher, Govind, Ajit, Chakraborty, Debashis

    Published 2023
    “…Different sensors can identify soil salinity in remote sensing data through direct and indirect indicators. …”
    Get full text
    Informe técnico
  7. Perceptions and landscape values in the English Lake District : a case study of Troutbeck Valley by Szász, Edina

    Published 2017
    “…Analysis of the interview results involved the organization and thematic categorization of data. One relevant finding was the uniformity of the identified key categories and sub-categories for the sense of place constructed by the respondents, which was found primarily ‘recreational’ by visitors and predominantly ‘reassuring-comforting’ by residents. …”
    H2

Search Tools: