Resultados de búsqueda - Sense data.

  1. Potential of satellite data in catastrophic flood risk mapping and assessment: case studies from Asia and Africa por Amarnath, Giriraj, Rajah, Ameer, Alahacoon, Niranga, Inada, Yoshiaki, Inoue, R., Aggarwal, Pramod K.

    Publicado 2014
    “…. $70 billion in damages. Remote sensing from space plays an important role in flood mapping and flood risk assessment. …”
    Enlace del recurso
    Conference Paper
  2. Comprehensive spatial mapping of metals and metalloids in the Peruvian Mantaro Valley using advanced geospatial data Integration por Pizarro Carcausto, Samuel Edwin, Pricope , Narcisa G., Vera Vilchez, Jesús Emilio, Cruz Luis, Juancarlos Alejandro, Lastra Paucar, Sphyros Roomel, Solórzano Acosta, Richard Andi, Verástegui Martínez, Patricia

    Publicado 2025
    “…This study mapped 25 elements (Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn, V) in the Peruvian Mantaro Valley using a training dataset of 109 topsoil samples combined with various geospatial datasets (remote sensing, climate, topography, soil data, and distance). …”
    Enlace del recurso
    Enlace del recurso
    Artículo
  3. Role of Modelling in International Crop Research: Overview and Some Case Studies por Reynolds, Matthew P., Kropff, Martin, Crossa, José, Koo, Jawoo, Kruseman, Gideon K., Molero Milan, Anabel, Rutkoski, Jessica, Schulthess, Urs C., Balwinder-Singh, Poonia, S., Sonder, Kai, Tonnang, Henri E.Z., Vadez, Vincent

    Publicado 2018
    “…New developments include, for example, use of remote sensed data and mobile phone technology linked to crop management decision support models, data sharing in the new era of big data, and the use of genomic selection and crop simulation models linked to environmental data to help make crop breeding decisions. …”
    Enlace del recurso
    Journal Article
  4. Fire in the Danau Sentarum landscape: historical, present perspectives por Dennis, R.A., Erman, A., Meijaard, E.

    Publicado 2000
    “…Burn scar areas were detected using remotely sensed data from four periods (1973, 1990, 1994 and 1997) obtained from a 24-year record. …”
    Enlace del recurso
    Journal Article
  5. Detection of Fall Armyworm infestation in maize fields during vegetative growth stages using temporal Sentinel-2 por Dzurume, Tatenda, Darvishzadeh, Roshanak, Dube, Timothy, Amjath Babu, T.S., Billah, Mutasim, Syed Nurul Alam, Kamal, Mustafa, Md. Harun-Or-Rashid, Biswas, Badal Chandra, Md. Ashraf Uddin, Md. Abdul Muyeed, Md Mostafizur Rahman Shah, Krupnik, Timothy J., Nelson, Andrew

    Publicado 2025
    “…Moreover, the results demonstrated the feasibility of detecting the severity of FAW infestation using temporal Sentinel-2 data and machine learning techniques. These findings underscore the potential of remote sensing and machine learning techniques for effectively monitoring and managing crop pests. …”
    Enlace del recurso
    Journal Article
  6. Satellite-based tracking of agricultural adaptation progress por Reymondin, Louis, Golden, Aaron, Spillane, Charles

    Publicado 2022
    “…To this end, we piloted a new approach, the Biomass Climate Adaptation Index (Biomass CAI), for measuring agricultural adaptation progress in Ethiopia across multiple scales using satellite remote sensing data. The Biomass CAI can monitor agri-biomass productivity associated with adaptation interventions remotely and facilitate more tailored precision adaptation. …”
    Enlace del recurso
    Informe técnico
  7. Statistics from Space: Next-Generation Agriculture Production Information for Enhanced Monitoring of Food Security in Mozambique - Enumerators training report por Centre of Excellence in Agri-Food Systems and Nutrition

    Publicado 2025
    “…The Statistics from Space project (SFS) seeks to support the Government of Mozambique to produce and disseminate accurate crop production statistical data leveraging satellite remote-sensing data and artificial intelligence augmented analytics. …”
    Enlace del recurso
    Informe técnico
  8. Stakeholders Workshop on Farmer-Centric Digital Transformation of African Agriculture por Rupavatharam, Srikanth, Patil, Mukund, Gogumalla Pranuthi, Gumma, Murali Krishna, Kumar, Kishore G., Kumar, Shalander, Jat, Mangi L.

    Publicado 2024
    “…Digital Agriculture offers a wide range of technology solutions for farmers, including smart farming, precision agriculture, data-driven decision support, extension systems, channels for improved market access, and financial services (Townsend et al., 2019). …”
    Enlace del recurso
    Informe técnico

Herramientas de búsqueda: