Resultados de búsqueda - Machine design.

  1. Site-specific fertilizer recommendation using data driven machine approaches enhanced wheat productivity and resource use efficiency por Liben, Feyera, Abera, Wuletawu, Ebrahim, Mohammed, Tilaye, Asmalu, Chernet, Meklit, Erkossa, Teklu, Tibebe, Degefie, Mponela, Powell, Kihara, Job Maguta, Tamene, Lulseged D.

    Publicado 2023
    “…Replicated trials using randomized complete block design were established on farmers’ fields Farm management history, grain, straw, biomass, fertilizer and grain prices data were collected using Open Data Kit (ODK) tools and analysed using R statistical package. …”
    Enlace del recurso
    Informe técnico
  2. Site-specific fertilizer recommendation using data driven machine learning enhanced wheat productivity and resource use efficiency por Liben, Feyera, Abera, Wuletawu, Chernet, Meklit Tariku, Ebrahim, Mohammed, Tilaye, Amsalu, Erkossa, Teklu, Degefie, Tibebe Degefie, Mponela, Powell, Kihara, Job, Tamene, Lulseged D.

    Publicado 2024
    “…Countries like Ethiopia are moving towards adopting site-specific fertilizer recommendations (SSFR) that are developed using machine learning (ML) and designed to enhance yields, profitability, and environmental benefits. …”
    Enlace del recurso
    Journal Article
  3. New putative antimicrobial candidates: In silico design of fish-derived antibacterial peptide-motifs por Okella, H., Georrge, J.J., Ochwo, S., Ndekezi, C., Koffi, K.T., Aber, J., Ajayi, C.O., Fofana, F.G., Ikiriza, H., Mtewa, A.G., Nkamwesiga, Joseph, Bassogog, C.B.B., Kato, C.D., Ogwang P.E.

    Publicado 2020
    “…The use of computational methods to design antimicrobial candidates of industrial application has however, been lagging behind. …”
    Enlace del recurso
    Journal Article
  4. Tolerance to spittlebugs (Hemiptera: Cercopidae) in Urochloa spp. and Megathyrsus maximus grasses por Espitia Buitrago, Paula Andrea, Ruiz-Hurtado, Andres Felipe, Hernández, Luis Miguel, Jauregui, Rosa Noemi, Cardoso Arango, Juan Andres

    Publicado 2024
    “…Each test had a row and column number to analyze the statistical data as a spatial design. The images were acquired prior to the infestation, and 35 days after the infestation for nymphs and prior to the infestation, 7 days after the infestation and 14 days after the infestations for adults. …”
    Enlace del recurso
    Conjunto de datos
  5. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction por Yunbi Xu, Zhang Xingping, Huihui Li, Hongjian Zheng, Jianan Zhang, Olsen, Michael, Varshney, Rajeev K., Boddupalli, P.M., Qian Qian

    Publicado 2022
    “…The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. …”
    Enlace del recurso
    Journal Article
  6. Assessing methane emissions from paddy fields through environmental and UAV remote sensing variables por Velez, Andres Felipe, Alvarez, Cesar Ivan, Navarro, Fabian, Guzman, Diego, Bohorquez, Martha Patricia, Selvaraj, Michael Gomez, Ishitani, Manabu

    Publicado 2024
    “…Leveraging technological advancements, we present a groundbreaking solution that integrates machine learning and remote sensing data, challenging traditional closed chamber methods. …”
    Enlace del recurso
    Journal Article
  7. Seasonal maize yield forecasting in South and East African countries using hybrid earth observation models por Kenduiywo, Benson Kipkemboi, Miller, Sara

    Publicado 2024
    “…This information is useful for NFBS bulletins forecasts, design and certification of maize insurance contracts, and estimation of loss and damage in the advent of climate justice.…”
    Enlace del recurso
    Journal Article
  8. Using an incomplete block design to allocate lines to environments improves sparse genome-based prediction in plant breeding por Montesinos López, Osval A., Montesinos López, Abelardo, Acosta, Ricardo, Varshney, Rajeev K., Bentley, Alison R., Crossa, José

    Publicado 2022
    “…Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. …”
    Enlace del recurso
    Journal Article
  9. Insecticide use, farmers’ self-reported health status, and genetically modified cowpea in Nigeria: Findings from a clustered randomized controlled trial with causal por Amare, Mulubrhan, Andam, Kwaw S., Spielman, David J., Bamiwuye, Temilolu, Nwagboso, Chibuzo, Zambrano, Patricia, Chambers, Judith A.

    Publicado 2025
    “…To explore heterogeneous responses, we combine ANCOVA (analysis of covariance) interactions with machine learning-based Causal Forest estimates of Conditional Average Treatment Effects (CATEs). …”
    Enlace del recurso
    Artículo preliminar
  10. Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery por Pizarro Carcausto, Samuel Edwin, Pricope, Narcisa G., Figueroa Venegas, Deyanira Antonella, Carbajal Llosa, Carlos Miguel, Quispe Huincho, Miriam Rocío, Vera Vilchez, Jesús Emilio, Alejandro Méndez, Lidiana Rene, Achallma Mendoza, Lino, González Tovar, Izamar Estrella, Salazar Coronel, Wilian, Loayza, Hildo, Cruz Luis, Juancarlos Alejandro, Arbizu Berrocal, Carlos Irvin

    Publicado 2023
    “…To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). …”
    Enlace del recurso
    Enlace del recurso
    Artículo
  11. The impact of genetically modified cowpea on yields, postharvest losses, and profitability in Nigeria: Findings from a cluster randomized controlled trial por Amare, Mulubrhan, Andam, Kwaw S., Spielman, David J., Bamiwuye, Temilolu, Zambrano, Patricia, Chambers, Judith A., Fasoranti, Adetunji, Popoola, Olufemi

    Publicado 2025
    “…We assess the impacts of a genetically modified pod borer-resistant (PBR) cowpea variety in Nigeria through a cluster randomized controlled trial conducted in two major cowpea-cultivating states. Our design allows us to examine the impacts of PBR cowpea with and without a package of complementary inputs (fertilizer and insecticides) and in comparison to farmers who received only a conventional improved cowpea variety. …”
    Enlace del recurso
    Artículo preliminar

Herramientas de búsqueda: