Resultados de búsqueda - "machine learning"

Limitar resultados
  1. Multi-hazard risk mapping using machine learning por Adounkpe, Peniel, Ghosh, Surajit, Amarnath, Giriraj

    Publicado 2022
    “…This study maps out Ghana’s multi-hazard risk of flood and drought by using machine learning (ML) models for susceptibility analysis, socioeconomic survey for vulnerability analysis and population density for exposure analysis. …”
    Enlace del recurso
    Informe técnico
  2. Machine learning and big data techniques for satellite-based rice phenology por Aguilar-Ariza, Andrés

    Publicado 2019
    “…Two optical moderate-resolution missions were combined to detect growth phases. Three machine-learning approaches (random forest, support vector machine, and gradient boosting trees) were trained with multitemporal NDVI data. …”
    Enlace del recurso
    Tesis
  3. Harnessing Machine Learning to Estimate Aquaculture’s Contributions to The Economy of Southwest Bangladesh por Belton, Ben, Haque, Mohammad Mahfujul, Ali, Hazrat, Nejadhashemi, Amir Pouyan, Hernández, Ricardo, Khondker, Murshed-E-Jahan, Ferriby, Hannah

    Publicado 2022
    “…The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export. …”
    Enlace del recurso
    Ponencia
  4. Harnessing Machine Learning to Estimate Aquaculture’s Contributions to the Economy of Southwest Bangladesh por Belton, Ben, Haque, Mohammad Mahfujul, Ali, Hazrat, Nejadhashemi, Amir Pouyan, Hernández, Ricardo, Khondker, Murshed-E-Jahan, Ferriby, Hannah

    Publicado 2022
    “…The presentation detailed the use of machine learning techniques to extract information from freely available satellite images and estimate the area of waterbodies used for aquaculture in seven districts in southern Bangladesh, one of country’s most important aquaculture zones producing fish for domestic markets and crustaceans for export.…”
    Enlace del recurso
    Resumen
  5. Machine learning reveals spatiotemporal genome evolution in Asian rice domestication por Ohyanagi, Hajime, Goto, Kosuke, Negrão, Sónia, Wing, Rod A., Tester, Mark A., McNally, Kenneth L., Bajic, Vladimir B., Mineta, Katsuhiko, Gojobori, Takashi

    Publicado 2019
    “…Here we show the genome-wide introgressive region (IR) map of Asian rice, by utilizing 4,587 accession genotypes with a stable outgroup species, particularly at the finest resolution through a machine learning-aided method. The IR map revealed that 14.2% of the rice genome consists of IRs, including both wide IRs (recent) and narrow IRs (ancient). …”
    Enlace del recurso
    Preprint
  6. Sample Earth: Machine-Learning–Ready Land-Cover Reference Dataset por Vantalon, Thibaud, Luong, Phuong Thi, Perez Escobar, Jorge Andres, Tello Dagua, Jhon Jairo, Phan, Trong Van, Nguyen, Hang, Hong Nguyen, Hoa Nguyen, Reymondin, Louis

    Publicado 2025
    “…This combined approach of expert interpretation, localized training, and structured data management ensured a high-quality, consistent, and machine-learning–ready dataset suitable for land-cover mapping and model training workflows.…”
    Enlace del recurso
    Conjunto de datos

Herramientas de búsqueda: