Resultados de búsqueda - "algorithm"

  1. Energieffektivisering av dricksvattendistribution : dataanalys och simulering av pumpdrift vid Görvälns vattenverk por Thorstensson, Anton

    Publicado 2020
    “…The project also investigates the possibilities of create consumption forecasts with machine learning algorithms and using these to improve the distribution system. …”
    L3
  2. Développement des prévisions hydrologiques saisonnières de Nouvelle Génération pour l’Afrique de l’Ouest et le Sahel por Ali, Abdou, Kiema, Arsene, Houngnibo, Mandela C M, Mohamed, Hamatan, Nimon, Pouwereou, Segnon, Alcade Christel, Zougmore, Robert Bellarmin

    Publicado 2025
    “…La nouvelle Génération des prévisions saisonnières combine les méthodes statistiques avancées, la modélisation hydrologique et l’utilisation d’algorithmes d’intelligence artificielle. Les nouveaux produits de prévision sont plus détaillés, plus précis que l’approche consensuelle. …”
    Enlace del recurso
    Brief
  3. Machine learning and big data techniques for satellite-based rice phenology por Aguilar-Ariza, Andrés

    Publicado 2019
    “…Analytics from validation showed that the algorithms were able to estimate rice phases with performances above 0.94 in f-1 score. …”
    Enlace del recurso
    Tesis
  4. Impact of Ghana's agricultural mechanization services center program por Benin, Samuel

    Publicado 2015
    “…A two‐stage propensity score matching and difference‐in‐difference estimation procedure is used to estimate the impacts of the program, employing different definitions of treatment, model specifications, and matching algorithms to assess sensitivity of the estimator to different assumptions. …”
    Enlace del recurso
    Journal Article
  5. Class prediction of closely related plant varieties using gene expression profiling por Ancillo, Gema, Gadea, Jose, Forment, Javier, Guerri, José, Navarro, Luis

    Publicado 2017
    “…Gene expression profiles have been used to predict mandarin clementine varieties (Citrus clementina, Hort. ex Tan.) by means of two independent supervised learning algorithms: Support Vector Machines and Prediction Analysis of Microarrays. …”
    Enlace del recurso
    Artículo
  6. Modelo de simulación de yuca (Manihot esculenta Crantz) en el trópico por Moreno Cadena, Leidy Patricia

    Publicado 2018
    “…CurveExpert was used to define the algorithms, the software Simile evaluated the performance of the simulation of individual equations and the program FITEVAL assess the goodness of fit of the model. …”
    Enlace del recurso
    Tesis
  7. Estimation of height and aerial biomass in Eucalyptus globulus plantations using UAV-LiDAR por Enriquez Pinedo, Lucía, Ortega Quispe, Kevin, Ccopi Trucios, Dennis, Urquizo Barrera, Julio, Rios Chavarría, Claudia, Pizarro Carcausto, Samuel, Matos Calderon, Diana, Patricio Rosales, Solanch, Rodríguez Cerrón, Mauro, Ore Aquino, Zoila, Paz Monge, Michel, Castañeda Tinco, Italo

    Publicado 2025
    “…Various LiDAR metrics were employed alongside field measurements to calibrate predictive models using multiple regression and machine learning algorithms. The results at the individual tree level show that RF is the most accurate model, with a coefficient of determination (R²) of 0.76 in the training set and 0.66 in the test set, outperforming Elastic Net (R² of 0.58 and 0.57, respectively). …”
    Enlace del recurso
    Artículo
  8. A Bayesian optimization R package for multitrait parental selection por Villar-Hernandez, Bartolo de J., Dreisigacker, Susanne, Crespo-Herrera, Leonardo A., Perez-Rodriguez, Paulino, Perez-Elizalde, Sergio, Toledo, Fernando H., Crossa, José

    Publicado 2024
    “…The package employs Bayesian optimization algorithms and three loss functions (Kullback–Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. …”
    Enlace del recurso
    Journal Article
  9. Globe - LFMC a global plant water status database for vegetation ecophysiology and wildfire applications por Yebra, Marta, Scortechini, Gianluca, Badi, Abdulbaset, Beget, Maria Eugenia, Boer, Mathias, Bradstock, Ross, Chuvieco, Emilio, Mark Danson, F., Dennison, Philip, Resco de Dios, Víctor, Di Bella, Carlos Marcelo, Forsyth, Greg, Frost, Philip, García, Mariano, Hamdi, Abdelaziz, He, Bimbin, Jolly, Matt, Kraaij, Tineke, Martin, M. Pilar, Mouillot, Florent, Newnham, Glenn, Nolan, Rachae, Pellizzaro, Grazia, Qi, Yi, Quan, Xingwen, Riaño, David, Roberts, Dar, Sow, Momadou, Ustin, Susan

    Publicado 2019
    “…The database contains 161,717 individual records based on in situ destructive samples used to measure LFMC, representing the amount of water in plant leaves per unit of dry matter. the primary goal of the database is to calibrate and validate remote sensing algorithms used to predict LFMC. However, this database is also relevant for the calibration and validation of dynamic global vegetation models, eco-physiological models of plant water stress as well as understanding the physiological drivers of spatiotemporal variation in LFMC at local, regional and global scales. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Artículo
  10. Non-Destructive Spectral Systems (NDSS) for modern inspection systems in real-time: challenges and industrial perspectives por Blasco, Jose, Gorla, Giulia, Munera, Sandra, Vitale, Raffaele, Amigo, Jose Manuel

    Publicado 2025
    “…Recent technological innovations, data acquisition, computational algorithms, and their applications in the agri-food, pharmaceutical, and environmental monitoring sectors are explored. …”
    Enlace del recurso
    Enlace del recurso
    draft
  11. Using phenotypic distribution models to predict livestock performance por Lozano Jaramillo, Maria, Worku, Setegn, Dessie, Tadelle, Komen, Hans, Bastiaansen, John W.M.

    Publicado 2019
    “…Phenotype distribution models were built using machine learning algorithms to make predictions of weight in the local environmental conditions based on the productivity for the breed. …”
    Enlace del recurso
    Journal Article
  12. Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR por Herath, Achini, Tiozon, Rhowell Jr., Kretzschmar, Tobias, Sreenivasulu, Nese, Mahon, Peter, Butardo, Vito

    Publicado 2024
    “…Here we utilised rapid surface Fourier transform infrared (FTIR) spectroscopy and machine learning algorithms (ML) to predict and classify polyphenolic antioxidants. …”
    Enlace del recurso
    Journal Article
  13. From Pixels to Planting Dates: Using the AgWise Remote-sensing Framework to Automate Maize Planting-date Detection por Dastidar, Payel Ghosh, Srivastava, Amit, Leroux, Louise

    Publicado 2025
    “…This study uses multitemporal satellite data, vegetation index information, and smoothing algorithms to extract planting dates across Kenya and Rwanda utilising the automated remote-sensing workflow of the AgWise platform. …”
    Enlace del recurso
    Artículo preliminar
  14. Application of a GIS-AF/RF model to assess the risk of herbicide leaching in a citrus-growing area of the Valencia Community, Spain por De-Paz, José M., Rubio, José L.

    Publicado 2017
    “…The soil and climate data required by the model were stored in an Arc/Info GIS in which the model algorithms were integrated using the AML programming language. …”
    Enlace del recurso
    Artículo
  15. Modelling agricultural drought: a review of latest advances in big data technologies por Houmma, I.H., El Mansouri, L., Gadal, S., Garba, M., Hadria, R.

    Publicado 2022
    “…The analysis focused on the different methods used, the choice of algorithms and the most relevant variables depending on whether they are descriptive or predictive models. …”
    Enlace del recurso
    Journal Article
  16. Mathematical modeling to predict rice's phenolic and mineral content through multispectral imaging por Buenafe, Reuben James, Tiozon, Rhowell N., Boyd, Lesley A., ‪Sartagoda, Kristel June, Sreenivasulu, Nese

    Publicado 2022
    “…Random forest and artificial neural network models depicted the multi-nutritional features of black rice with 85.35 and 99.9% accuracy, respectively. These prediction algorithms would help rice breeders strategically breed nutritionally valuable genotypes based on simple, high-through-put videometerLAB readings and a small number of nutritional assays.…”
    Enlace del recurso
    Journal Article
  17. Development of AI methods for seed yield prediction using RGB images: Progress Report por Arrechea, Darwin A., Cardoso Arango, Juan Andrés

    Publicado 2023
    “…The focal point of our exploration is the automated counting of seeds in forages using DL algorithms. The current landscape of agricultural technology reveals a growing need for more accurate and efficient methods of predicting seed yields. …”
    Enlace del recurso
    Internal Document
  18. Livestock detection in African rangelands: Potential of high-resolution remote sensing data por Ocholla, I.A., Pellikka, P., Karanja, F.N., Vuorinne, I., Odipo, Victor, Heiskanen, J.

    Publicado 2024
    “…In this paper, we present a review of current technological advancements in remote sensing and detection algorithms in livestock censuses, identifying weaknesses in sensors and detection methods, and highlighting issues that currently limit adoption of these technologies in African countries. …”
    Enlace del recurso
    Journal Article

Herramientas de búsqueda: