Resultados de búsqueda - "Sense data."

  1. Improving spatiotemporal groundwater estimates after natural disasters using remotely sensed data: a case study of the Indian Ocean Tsunami por Chinnasamy, Pennan, Sunde, M.G.

    Publicado 2016
    “…The analysis demonstrated the utility of remotely sensed data in predicting and assessing the impacts of natural disasters.…”
    Enlace del recurso
    Journal Article
  2. Using Remote Sensing Data in the Cloud to Monitor Climate Change in Senegal Regions Based on Seasonal Variables from 2000 to 2020.... por Alvarez, Cesar Ivan, Govind, Ajit

    Publicado 2024
    “…By evaluating correlations between vegetation, using NDVI, land surface temperature (LST), mean temperature, and precipitation from remote sensing data collected over the last 20 years (2000 to 2020) through Google Earth Engine, we have discovered a high negative correlation between NDVI and LST, a high positive correlation between NDVI and precipitation, and the lowest correlation between NDVI and mean temperature. …”
    Enlace del recurso
    Conference Proceedings
  3. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression por Ichii, Kazuhito, Ueyama, Masahito, Masayuki Kondo, Saigusa, Nobuko, Kim, Joon, Alberto, Ma. Carmelita R., Ardö, Jonas, Euskirchen, Eugenie S., Minseok Kang, Hirano, Takashi, Joiner, Joanna, Kobayashi, Hideki, Belelli Marchesini, Luca, Merbold, Lutz, Miyata, Akira, Saitoh, Taku M., Takagi, Kentaro, Varlagin, Andrej, Bret-Harte, Marion Syndonia, Kenzo Kitamura, Kosugi, Yoshiko, Ayumi Kotani, Kumar, K., Li, Shenggong, Machimura, Takashi, Yojiro Matsuura, Yasuko Mizoguchi, Takeshi Ohta, Mukherjee, Sandipan, Yuji Yanagi, Yasuda, Yukio, Yiping, Zhang, Fenghua Zhao

    Publicado 2017
    “…Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8 days are reproduced (e.g., r2 = 0.73 and 0.42 for 8 day GPP and NEE). …”
    Enlace del recurso
    Journal Article
  4. Förtolkat digitalt data till skogsägarplan por Lundgren, Erik

    Publicado 2012
    “…This report is based on survey questions sent to five different organizations working with remote sensing data. Only two of these where willing to participate in this investigation. …”
    M2
  5. Drought monitoring: Mali por Dembélé, Moctar, Koné, A., Amarnath, Giriraj, Zwart, Sander, Schmitter, Petra

    Publicado 2025
    “…The Mali Drought Monitoring System (MaliDMS) helps monitor drought onset, occurrence, duration, extent and severity based on WaPOR-derived and other high resolution remote-sensing data that are generated in near real time to enable a comprehensive assessment of drought conditions.…”
    Enlace del recurso
    Brief
  6. Statistics from space: Next-generation agricultural production information for enhanced monitoring of food security in Mozambique: Project status update (H1 2023) por Koo, Jawoo

    Publicado 2023
    “…Objective: Produce and disseminate accurate crop production statistics data leveraging satellite remote sensing data for timely food policy decisions in Mozambique.…”
    Enlace del recurso
    Informe técnico
  7. Predicting high-magnitude, low-frequency crop losses using machine learning: An application to cereal crops in Ethiopia por Mann, Michael L., Malik, Arun S., Warner, James

    Publicado 2018
    “…In this paper we propose a new data fusion method combining remotely-sensed data with agricultural survey data that might address these limitations. …”
    Enlace del recurso
    Artículo preliminar
  8. Predicting high-magnitude, low-frequency crop losses using machine learning: An application to cereal crops in Ethiopia por Mann, Michael L., Warner, James, Malik, Arun S.

    Publicado 2019
    “…In this paper, we propose a new data fusion method—combining remotely sensed data with agricultural survey data—that might address these limitations. …”
    Enlace del recurso
    Journal Article
  9. Real-time satellite data for natural resources management por Technical Centre for Agricultural and Rural Cooperation

    Publicado 2004
    “…John Stephenson and Jim Williams explain how weather satellite data reception systems are making remote sensing data more accessible for a variety of local applications.…”
    Enlace del recurso
    Magazine Article
  10. Irrigation: Remote control por Zwart, Sander J., Leclert, Lucie M.C., Bastiaanssen, Wim G.M.

    Publicado 2010
    “…Managers of the Office du Niger irrigation scheme in Mali are using remote sensing data to analyse the efficiency of the system without having to physically check the infrastructure. …”
    Enlace del recurso
    Magazine Article
  11. Modeling of Effective Leaf Area Index por Selin, Lina

    Publicado 2018
    “…The remote sensing data used were airborne laser scanning (ALS) data, Interferometric Synthetic Aperture Radar (InSAR) data from TanDEM-X, and stereo matched drone images. …”
    H3
  12. Assessing the accuracy for area-based tree species classification using Sentinel-1 C-band SAR data por Udali, Alberto

    Publicado 2019
    “…The re-mote sensing data used were C-band Synthetic Aperture Radar (SAR) data from Sentinel-1. …”
    H2
  13. Hydrological parametrization through remote sensing in the Volta Basin West Africa por Hafeez, M., Andreini, Marc, Liebe, Jens R., Friesen, J., Marx, A., Giesen, Nick van de

    Publicado 2007
    “…The comparison of sensible heat flux measured from remotely sensed data and scintillometers provide accurate results. …”
    Enlace del recurso
    Journal Article

Herramientas de búsqueda: