Resultados de búsqueda - "Sense data."

  1. Anthropogenic Decline of Ecosystem Services Threatens the Integrity of the Unique Hyrcanian (Caspian) Forests in Northern Iran por Zarandian, A., Baral, H., Yavari, A.R., Jafari, H.R., Stork, N.E., Ling, M.A., Amirnejad, H.

    Publicado 2016
    “…A rapid, qualitative, and participatory approach was used including interviews with local households and experts in combination with assessment of land use/cover remote sensing data to identify and map priority ecosystem services in the Geographic Information System (GIS). …”
    Enlace del recurso
    Journal Article
  2. A scenario modelling approach to assess management impacts on soil erosion in coffee systems in Central America por Ospina, Alejandra

    Publicado 2025
    “…Soil erosion was modelled using the RUSLE (Revised Universal Soil Loss Equation), integrating soil and vegetation cover field data, with remote sensing data. Management scenarios were developed to assess the role of two principal coffee management strategies in mitigating soil erosion: increasing vegetation cover, and soil conservation practices. …”
    Enlace del recurso
    Artículo
  3. Classification of ground lichen using Sentinel-2 and airborne laser data por Larsson, Helene

    Publicado 2018
    “…Lichens are the primary winter grazing resource for reindeer, therefore, mapping of lichens is of interest.The objective of this study is to evaluate the use of remote sensing data from the new Sentinel-2 satellite for the classifcation of ground lichen and to assess whether adding information derived from airborne laser scanning (ALS) willimprove the result. …”
    H3
  4. Land degradation assessment in the Argentinean Puna: Comparing expert knowledge with satellite-derived information por García, César Luis, Teich, Ingrid, Gonzalez Roglich, Mariano, Kindgard, Adolfo Federico, Ravelo, Andrés Carlos, Liniger, Hanspeter

    Publicado 2018
    “…In this article we compare the inferences on land degradation status and its temporal trends derived from LADA-WOCAT method with those obtained from remotely sensed data. Our aim is to understand similarities and differences in the assessments in order to provide recommendations and suggestions on improved LDN assessment methods, reporting and monitoring. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Artículo
  5. Remote Sensing Dynamics for Analyzing Nitrogen Impact on Rice Yield in Limited Environments por Fita, David, San Bautista, Alberto, Castiñeira-Ibañez, Sergio, Franch, Belén, Domingo, Concha, Rubio, Constanza

    Publicado 2024
    “…Two separate relationships between NIR–red and NDVI–NIR were identified, suggesting that using remote sensing data can help enhance rice crop management by adjusting nitrogen input based on plant nitrogen concentration and yield estimates. …”
    Enlace del recurso
    Enlace del recurso
    Artículo
  6. Assessing potential locations for flood-based farming using satellite imagery: a case study of Afar region, Ethiopia por Gumma, Murali K., Amede, T., Getnet, M., Pinjarla, B., Panjala, P., Legesse, G., Tilahun, G., Akker, Elisabeth van den, Berdel, W., Keller, C., Siambi, M., Whitbread, Anthony M.

    Publicado 2022
    “…In an attempt to convert water from storm generated floods into productive use, this study proposes a methodology using remote sensing data and geographical information system tools to identify potential sites where flood spreading weirs may be installed and farming systems developed which produce food and fodder for poor rural communities. …”
    Enlace del recurso
    Journal Article
  7. Coupling remote sensing and hydrological model for evaluating the impacts of climate change on streamflow in data-scarce environment por Akhtar, F., Awan, Usman Khalid, Borgemeister, C., Tischbein, B.

    Publicado 2021
    “…To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. …”
    Enlace del recurso
    Journal Article
  8. Machine learning model accurately predict maize grain yields in conservation agriculture systems in southern Africa por Muthoni, Francis K., Thierfelder, Christian L., Mudereri, B.T., Manda, J., Bekunda, Mateete A., Hoeschle-Zeledon, Irmgard

    Publicado 2021
    “…Results demonstrates that multi-source remotely sensed data, coupled with advanced and efficient machine learning algorithms can provides accurate, cost-effective, and timely platform for predicting the optimal locations for the upscaling sustainable agricultural technologies.…”
    Enlace del recurso
    Conference Paper
  9. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms por Tramontana, Gianluca, Jung, Martin, Schwalm, Christopher R., Ichii, Kazuhito, Camps-Valls, Gustau, Ráduly, Botond, Reichstein, Markus, Arain, M. Altaf, Cescatti, Alessandro, Kiely, Gerard, Merbold, Lutz, Serrano-Ortiz, Penelope, Sickert, Sven, Wolf, Sebastian, Papale, Dario

    Publicado 2016
    “…We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. …”
    Enlace del recurso
    Journal Article
  10. Assessing climate resilience in rice production: Measuring the impact of the Millennium Challenge Corporation’s IWRM scheme in the Senegal River Valley using remote sensing and mac... por Fionnagáin, D.Ó., Geever, M., O’Farrell, J., Codyre, P., Trearty, R., Tessema, Y.M., Reymondin, Louis, Loboguerrero, Ana Maria, Spillane, Charlie, Golden, A

    Publicado 2024
    “…Economic analysis of increased rice yields in the region translates to approximately US\$ 61.2 million in market value since 2015, highlighting the economic returns from the project investment. Both the remote sensing data and ground audits identify issues regarding post-project deterioration of irrigation infrastructure, emphasising the need for long-term maintenance of irrigation infrastructure to support climate adaptation benefits arising from irrigation. …”
    Enlace del recurso
    Journal Article
  11. From Rangelands to Cropland, Land-Use Change and its impact on soil organic carbon variables in a Peruvian Andean Highlands: A Machine Learning Modeling approach por Carbajal, M., Ramírez, D., Turin, C., Schaeffer, S.M., Konkel, J., Ninanya, J., Rinza, J., De Mendiburu, F., Zorogastua, P., Villaorduña, L., Quiroz, R.

    Publicado 2024
    “…Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variables using remote sensing data, land-use and land-cover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. …”
    Enlace del recurso
    Journal Article
  12. Spatial rice yield estimation based on MODIS and Sentinel-1 SAR data and ORYZA crop growth model por Setiyono, Tri, Quicho, Emma, Gatti, Luca, Campos-Taberner, Manuel, Busetto, Lorenzo, Collivignarelli, Francesco, García-Haro, Francisco, Boschetti, Mirco, Khan, Nasreen, Holecz, Francesco

    Publicado 2018
    “…The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. …”
    Enlace del recurso
    Journal Article
  13. Technical workflow development for integrating drone surveys and entomological sampling to characterise aquatic larval habitats of Anopheles funestus in agricultural landscapes in... por Byrne, Isabel, Chan, Kallista, Manrique, Edgar, Lines, Jo, Wolie, Rosine Z., Trujillano, Fedra, Garay, Gabriel Jimenez

    Publicado 2021
    “…Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. …”
    Enlace del recurso
    Journal Article
  14. A global benchmark map of water productivity for rainfed and irrigated wheat por Zwart, Sander J., Bastiaanssen, Wim G.M., Fraiture, Charlotte de, David, S.

    Publicado 2010
    “…The WATPRO water productivity model for wheat, using remote sensing data products as input, was applied at a global scale with global data sets of the NDVI and surface albedo to benchmark water productivity of wheat for the beginning of this millennium. …”
    Enlace del recurso
    Journal Article
  15. Spatio-temporal distribution of actual evapotranspiration in the Indus basin irrigation system por Liaqat, U.W., Choi, M., Awan, Usman K.

    Publicado 2015
    “…In this study, we examined the application of SEBS using publically available remote sensing data to assess spatial variations in water consumption and to map water stress from daily to annual scales in the IBIS. …”
    Enlace del recurso
    Journal Article
  16. Rapid emergency response mapping for the 2016 floods in Kelani river basin, Sri Lanka por Alahacoon, Niranga, Pani, Peejush, Matheswaran, Karthikeyan, Samansiri, Srimal, Amarnath, Giriraj

    Publicado 2016
    “…This is mainly due to the large and timely availability of different types of remotely sensed data as well as geospatial information acquired in the field which may be potentially exploited in the different phases of the disaster management cycle. …”
    Enlace del recurso
    Conference Paper
  17. Pan-tropical prediction of forest structure from the largest trees por Bastin, J.F., Rutishauser, E., Kellner, J.R., Saatchi, S., Pélissier, R., Hérault, B., Slik, F., Bogaert, J., Cannière, C. de, Marshall, A.R., Poulsen, J., Álvarez Loyayza, P., Andrade, A., Angbonga-Basia, A., Araújo Murakami, Alejandro, Arroyo, L., Ayyappan, N., Paulo de Azevedo, C., Banki, O., Barbier, N., Barroso, Jorcely G., Beeckman, H., Bitariho, R., Boeckx, P., Boehning-Gaese, K., Brandao, H., Brearley, F.Q., Breuer Ndoundou Hockemba, M., Brienen, R., Camargo, J.L.C., Campos Arceiz, A., Cassart, B., Chave, J., Chazdon, R., Chuyong, G.B., Clark, D.B., Clark, C.J., Condit, R., Honorio Coronado, E.N., Davidar, P., Haulleville, T. de, Descroix, L., Doucet, J-L., Dourdain, A., Droissart, V., Duncan, T., Silva Espejo, J.E., Espinosa, S., Farwig, N., Fayolle, A., Feldpausch, T.R., Ferraz, A., Fletcher, C., Gajapersad, K., Gillet, J.F., Leao do Amaral, I., Gonmadje, C., Grogan, J., Harris, D., Herzog, S.K., Homeier, J., Hubau, W., Hubbell, S.P., Hufkens, K., Hurtado, J., Kamdem, N.G., Kearsley, E., Kenfack, D., Kessler, M., Labrière, N., Laumonier, Y., Laurance, S.G.W., Laurance, W.F., Lewis, S.L., Libalah, M.B., Ligot, G., Lloyd, J., Lovejoy, Thomas E., Malhi, Y., Marimon, B.S., Marimon Junior, B.H., Martin, E.H., Matius, P., Meyer, V., Mendoza Bautista, C., Monteagudo Mendoza, Abel L., Mtui, A., Neill, D., Parada Gutierrez, G.A., Pardo, G., Parren, M., Parthasarathy, N., Phillips, Oliver L., Pitman, N.C.A., Ploton, P., Ponette, Q., Ramesh, B.R., Razafimahaimodison, J-C., Réjou-Méchain, M., Gonçalves Rolim, S., Romero Saltos, H., Brum Rossi, L.M., Spironello, W.R., Rovero, F., Saner, P., Sasaki, D., Schulze, M., Silveira, M., Singh, J., Sist, P., Sonke, B., Soto, J.D., Rodrigues de Souza, C., Stropp, J., Sullivan, M.J.P., Swanepoel, B., Ter Steege, H., Terborgh, J., Texier, N., Toma, T., Valencia, R., Valenzuela, L., Valle Ferreira, L., Cornejo Valverde, F., Andel, T.R. van, Vásque, R., Verbeeck, H., Vivek, P., Vleminckx, J., Vos, V.A., Wagner, F.H., Warsudi, P.P., Wortel, V., Zagt, R.J., Zebaze, D.

    Publicado 2018
    “…However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. …”
    Enlace del recurso
    Journal Article
  18. From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach por Carbajal, Mariella, Ramirez, David A., Turin Canchaya, Cecilia Claudia, Schaeffer, Sean M., Konkel, Julie, Ninanya, Johan, Rinza, Javier, De Mendiburu, Felipe, Zorogastua, Percy, Villaorduña, Liliana, Quiroz, Roberto

    Publicado 2024
    “…Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. …”
    Enlace del recurso
    Enlace del recurso
    Artículo

Herramientas de búsqueda: