Resultados de búsqueda - "Prediction

  1. Methylation in the CHH context allows to predict recombination in rice por Peñuela, Mauricio, Gallo-Franco, Jenny Johana, Finke, Jorge, Rocha, Camilo, Gkanogiannis, Anestis, Ghneim-Herrera, Thaura, Lorieux, Mathias

    Publicado 2022
    “…Finally, machine learning regression models are applied to predict recombination using the count of methylated cytosines in the CHH context as the entrance feature. …”
    Enlace del recurso
    Journal Article
  2. Prediction of genetic gains in sweet potato genotypes by polycross por Mariano, G.G., Pavan, B.E., Otoboni, M.E.F., Andrade, M.I., Vargas, P.F.

    Publicado 2023
    “…The direct selection enabled a higher prediction of gains for each trait, but the joint analysis maximized the selection gains for all traits of interest. …”
    Enlace del recurso
    Journal Article
  3. Predicting technology adoption to improve research priority-setting por Batz, Franz-Jozef, Janssen, Willem G., Peters, Kurt J.

    Publicado 2003
    “…This paper presents an improved approach for predicting the speed and ceiling of technology adoption, which is a crucial information for research priority setting. …”
    Enlace del recurso
    Journal Article
  4. Multivariate random forest prediction of poverty and malnutrition prevalence por Browne, Chris, Matteson, David S., McBride, Linden, Hu, Leiqiu, Liu, Yanyan, Sun, Ying, Wen, Jiaming, Barrett, Christopher B.

    Publicado 2021
    “…Applied to data from 11 low and lower-middle income countries, we find predictive accuracy broadly comparable for both tasks to prior studies that use proprietary data and/or deep or transfer learning methods.…”
    Enlace del recurso
    Journal Article
  5. Data augmentation enhances plant-genomic-enabled predictions por Montesinos-Lopez, Osval A., Solis-Camacho, Mario Alberto, Crespo Herrera, Leonardo A., Saint Pierre, Carolina, Huerta Prado, Gloria Isabel, Ramos-Pulido, Sofia, Al-Nowibet, Khalid, Fritsche-Neto, Roberto, Gerard, Guillermo S., Montesinos-Lopez, Abelardo, Crossa, José

    Publicado 2024
    “…We found empirical evidence that DA is a powerful tool to improve the prediction accuracy, since we improved the prediction accuracy of the top lines in the 14 datasets under study. …”
    Enlace del recurso
    Journal Article
  6. Predicting rice phenotypes with meta and multi-target learning por Orhobor, Oghenejokpeme I., Alexandrov, Nickolai N., King, Ross D.

    Publicado 2020
    “…Furthermore, we make comparisons to multi-target learning, given that one is typically interested in predicting multiple phenotypes. We evaluated the frameworks and multi-target learning approaches on a genomic rice dataset where the regression task is to predict plant phenotype. …”
    Enlace del recurso
    Journal Article
  7. Characterization of statistical features for plant microRNA prediction por Thakur, Vivek, Wanchana, Samart, Xu, Mercedes, Bruskiewich, Richard, Quick, William Paul, Mosig, Axel, Zhu, Xinguang

    Publicado 2011
    “…In summary, the present study reports behavior of few general and tool-specific statistical features for improving the prediction accuracy of plant miRNAs from deep-sequencing data.…”
    Enlace del recurso
    Journal Article
  8. Enhancing across-population genomic prediction for maize hybrids por Guangning Yu, Furong Li, Xin Wang, Yuxiang Zhang, Kai Zhou, Wenyan Yang, Xiusheng Guan, Xuecai Zhang, Chenwu Xu, Yang Xu

    Publicado 2024
    “…In crop breeding, genomic selection (GS) serves as a powerful tool for predicting unknown phenotypes by using genome-wide markers, aimed at enhancing genetic gain for quantitative traits. …”
    Enlace del recurso
    Journal Article

Herramientas de búsqueda: