Resultados de búsqueda - "Google"

  1. An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) por Medina Medina, Angel James, Salas López, Rolando, Zabaleta Santisteban, Jhon Antony, Tuesta Trauco, Katerin Meliza, Turpo Cayo, Efrain Yury, Huaman Haro, Nixon, Oliva Cruz, Manuel, Gómez Fernández, Darwin

    Publicado 2024
    “…An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. …”
    Enlace del recurso
    Enlace del recurso
    Artículo
  2. Identificación de zonas afectadas por sales en el Centro Sur de Córdoba usando Google Earth Engine por Gentili, Nicolás, Bocco, Joaquín, Micheloud, Elizabeth, Videla Mensegue, Horacio Rogelio, Córdoba, Mariano

    Publicado 2024
    “…Se trabajó con dos bases de datos de diferentes años, e imágenes satelitales de la plataforma Google Earth Engine. Con estos se elaboró un modelo de predicción de la salinidad superficial para toda la cuenca, el cual se lo evaluó para los diferentes ciclos de humedad. …”
    Enlace del recurso
    Conferencia
  3. Spatial drought occurrences and distribution using VCI, TCI, VHI, and Google Earth Engine in Bilate River Watershed, Rift Valley of Ethiopia por Burka, A., Biazin, B., Bewket, W.

    Publicado 2024
    “…This research aimed to assess the occurrence and distribution of drought in the Bilate River Watershed (BRW) using the Vegetation Health Index (VHI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI), along with the Google Earth Engine platform. Vegetation products (MOD13Q1) and LST products (MOD11A2) were selected from May to October each year, covering the period from 2000 to 2022. …”
    Enlace del recurso
    Journal Article
  4. Mapping active paddy rice area over monsoon asia using time-series Sentinel – 2 images in Google earth engine; a case study over lower gangetic plain por Maiti, A., Acharya, P., Sannigrahi, S., Zhang, Q., Bar, S., Chakraborti, S., Gayen, B. K., Barik, G., Ghosh, Surajit, Punia, M.

    Publicado 2022
    “…Sentinel–2A/2B time-series images were used for the year 2018 to map paddy rice over the Lower Gangetic Plain (LGP) using Google earth engine (GEE). The overall accuracy (OA) obtained from IPPPM was 85%. …”
    Enlace del recurso
    Journal Article

Herramientas de búsqueda: