Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia

Occurrence of antimicrobial-resistant Salmonella strains has been reported worldwide, because of inappropriate use of antimicrobial products in either humans or animals. The presence of multidrug resistant Salmonella in pig production systems had been reported in Antioquia, Colombia. Aim: To identif...

Descripción completa

Detalles Bibliográficos
Autores principales: García Álvarez, María Isabel, Vidal, Juana L., Donado Godoy, Pilar, Smith, Jared, Shariat, Nikki, Valencia, María Fernanda, Gómez Osorio, Luis M., López Osorio, Sara, Chaparro Gutiérrez, Jenny J.
Formato: article
Lenguaje:Inglés
Publicado: Public Library of Science 2025
Materias:
Acceso en línea:https://pubmed.ncbi.nlm.nih.gov/39888971/
http://hdl.handle.net/20.500.12324/41148
id RepoAGROSAVIA41148
record_format dspace
institution Corporación Colombiana de Investigación Agropecuaria
collection Repositorio AGROSAVIA
language Inglés
topic Enfermedades de los animales - L73
Salmonella
Antimicrobiano
Cerdo cebón
Explotación agraria
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_6757
http://aims.fao.org/aos/agrovoc/c_509
http://aims.fao.org/aos/agrovoc/c_59e0f842
http://aims.fao.org/aos/agrovoc/c_2809
spellingShingle Enfermedades de los animales - L73
Salmonella
Antimicrobiano
Cerdo cebón
Explotación agraria
Ganadería y especies menores
http://aims.fao.org/aos/agrovoc/c_6757
http://aims.fao.org/aos/agrovoc/c_509
http://aims.fao.org/aos/agrovoc/c_59e0f842
http://aims.fao.org/aos/agrovoc/c_2809
García Álvarez, María Isabel
Vidal, Juana L.
Donado Godoy, Pilar
Smith, Jared
Shariat, Nikki
Valencia, María Fernanda
Gómez Osorio, Luis M.
López Osorio, Sara
Chaparro Gutiérrez, Jenny J.
Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
description Occurrence of antimicrobial-resistant Salmonella strains has been reported worldwide, because of inappropriate use of antimicrobial products in either humans or animals. The presence of multidrug resistant Salmonella in pig production systems had been reported in Antioquia, Colombia. Aim: To identify antimicrobial resistance genes (ARG) in different Salmonella spp. strains isolated from pig productions in Antioquia, Colombia. Methods: Samples were received at the Diagnostic Unit of the Faculty of Agrarian Sciences at the University of Antioquia, from January 1, 2019, to January 2021. A total of 28 isolates of Salmonella spp. were included, which presented phenotypic resistance to more than one antibiotic used in pig farms. Whole genome sequencing (WGS) was performed in the Unit of Genomic of Agrosavia using an automated pipeline from the GHRU- Sanger Institute, employing the Illumina MiSeq platform. Results: WGS revealed 34 ARGs among these isolates. In 25 isolates (89%) more than two ARGs were found. Genes encoding resistance were found for 10 different groups of antibiotics (beta-lactam, aminoglycosides, chloramphenicol, rifampicins, lincosamides, fluoroquinolones, tetracyclines, sulfonamides and trimethoprim). The most frequently observed MDR profile in Typhimurium isolates was AMP-CEX-CEP-CEF-EFT-CEQ-FLU-ENR-TE-FFC-SXT.
format article
author García Álvarez, María Isabel
Vidal, Juana L.
Donado Godoy, Pilar
Smith, Jared
Shariat, Nikki
Valencia, María Fernanda
Gómez Osorio, Luis M.
López Osorio, Sara
Chaparro Gutiérrez, Jenny J.
author_facet García Álvarez, María Isabel
Vidal, Juana L.
Donado Godoy, Pilar
Smith, Jared
Shariat, Nikki
Valencia, María Fernanda
Gómez Osorio, Luis M.
López Osorio, Sara
Chaparro Gutiérrez, Jenny J.
author_sort García Álvarez, María Isabel
title Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
title_short Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
title_full Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
title_fullStr Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
title_full_unstemmed Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia
title_sort genomic characterization of antimicrobialresistance and virulence factors in salmonella isolates obtained from pig farms in antioquia, colombia
publisher Public Library of Science
publishDate 2025
url https://pubmed.ncbi.nlm.nih.gov/39888971/
http://hdl.handle.net/20.500.12324/41148
work_keys_str_mv AT garciaalvarezmariaisabel genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT vidaljuanal genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT donadogodoypilar genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT smithjared genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT shariatnikki genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT valenciamariafernanda genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT gomezosorioluism genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT lopezosoriosara genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
AT chaparrogutierrezjennyj genomiccharacterizationofantimicrobialresistanceandvirulencefactorsinsalmonellaisolatesobtainedfrompigfarmsinantioquiacolombia
_version_ 1842255945593257984
spelling RepoAGROSAVIA411482025-08-29T03:01:14Z Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia Genomic characterization of antimicrobialresistance and virulence factors in Salmonella isolates obtained from pig farms in Antioquia, Colombia García Álvarez, María Isabel Vidal, Juana L. Donado Godoy, Pilar Smith, Jared Shariat, Nikki Valencia, María Fernanda Gómez Osorio, Luis M. López Osorio, Sara Chaparro Gutiérrez, Jenny J. Enfermedades de los animales - L73 Salmonella Antimicrobiano Cerdo cebón Explotación agraria Ganadería y especies menores http://aims.fao.org/aos/agrovoc/c_6757 http://aims.fao.org/aos/agrovoc/c_509 http://aims.fao.org/aos/agrovoc/c_59e0f842 http://aims.fao.org/aos/agrovoc/c_2809 Occurrence of antimicrobial-resistant Salmonella strains has been reported worldwide, because of inappropriate use of antimicrobial products in either humans or animals. The presence of multidrug resistant Salmonella in pig production systems had been reported in Antioquia, Colombia. Aim: To identify antimicrobial resistance genes (ARG) in different Salmonella spp. strains isolated from pig productions in Antioquia, Colombia. Methods: Samples were received at the Diagnostic Unit of the Faculty of Agrarian Sciences at the University of Antioquia, from January 1, 2019, to January 2021. A total of 28 isolates of Salmonella spp. were included, which presented phenotypic resistance to more than one antibiotic used in pig farms. Whole genome sequencing (WGS) was performed in the Unit of Genomic of Agrosavia using an automated pipeline from the GHRU- Sanger Institute, employing the Illumina MiSeq platform. Results: WGS revealed 34 ARGs among these isolates. In 25 isolates (89%) more than two ARGs were found. Genes encoding resistance were found for 10 different groups of antibiotics (beta-lactam, aminoglycosides, chloramphenicol, rifampicins, lincosamides, fluoroquinolones, tetracyclines, sulfonamides and trimethoprim). The most frequently observed MDR profile in Typhimurium isolates was AMP-CEX-CEP-CEF-EFT-CEQ-FLU-ENR-TE-FFC-SXT. Porcicultura 2025-08-28T19:44:35Z 2025-08-28T19:44:35Z 2025-01 2025 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 https://pubmed.ncbi.nlm.nih.gov/39888971/ 1935-2727 http://hdl.handle.net/20.500.12324/41148 10.1371/journal.pntd.0012830 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA eng PLoS Neglected Tropical Diseases 19 1 1 18 Wibisono FM, Wibisono FJ, Effendi MH, Plumeriastuti H, Hidayatullah AR, Hartadi EB, et al. A review of salmonellosis on poultry farms: Public health importance. Syst Rev Pharm. 2020;11(9):481–6. Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci World J. 2015;2015:520179. https://doi.org/10.1155/2015/520179 PMID: 25664339 Consumo per cápita de carne de cerdo en Colombia. Porkcolombia. 2022. Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA, et al. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: a Meta-analysis. Appl Environ Microbiol. 2019;85(14):e00591–19. https://doi.org/10.1128/AEM.00591-19 PMID: 31053586 Instituto Colombiano Agropecuario. Censos pecuarios nacional. 2023. Ministerio de Agricultura y Desarrollo Rural. Cadena Cárnica porcina. 2021. Comunicado de prensa: Consumo de carne de cerdo en Colombia llegó a 13 kg por persona en 2022. Porkcolombia. 2023. El valor de la actividad porcícola. Porkcolombia. 2022. Shang K, Wei B, Cha S-Y, Zhang J-F, Park J-Y, Lee Y-J, et al. The Occurrence of Antimicrobial-Resistant Salmonellaenterica in Hatcheries and Dissemination in an Integrated Broiler Chicken Operation in Korea. Animals (Basel). 2021;11(1):154. https://doi.org/10.3390/ani11010154 PMID: 33440890 Brown A, Grass J, Richardson L, Nisler A, Bicknese A, Gould L, et al. Antimicrobial resistance in salmonella that caused foodborne disease outbreaks: United States, 2003–2012. Epidemiol Infect. 2017;145:766–74. https://doi.org/10.1017/S0950268816002867 PMID: 27919296 VanderWaal K, Deen J. Global trends in infectious diseases of swine. Proc Natl Acad Sci U S A. 2018;115(45):11495–500. https://doi.org/10.1073/pnas.1806068115 PMID: 30348781 Van TTH, Yidana Z, Smooker P, Coloe P. Antibiotic use in food animals in the world with focus on Africa: pluses and minuses. J Glob Antimicrob Resist. 2019. https://doi.org/10.1016/j.jgar.2019.07.031 PMID: 31401170 Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11(1):36–42. https://doi.org/10.4103/jgid.jgid_110_18 PMID: 30814834 Vidal J, Clavijo V, Castellanos L, Kathiresan J, Kumar A, Mehta K, et al. Multidrug-resistant Salmonella spp. in fecal samples of pigs with suspected salmonellosis in Antioquia, Colombia, 2019–2021. Rev Panam Salud Publica. 2023;47:2023. https://doi.org/10.26633/RPSP.2023.46 PMID: 37082540 Giraldo-Cardona J, Gualdrón-Ramírez D, Chamorro-Tobar I, Pulido-Villamarín A, Santamaría-Durán N, Castañeda-Salazar R, et al. Salmonella spp. prevalence, antimicrobial resistance and risk factor determination in Colombian swine farms. Pesquisa Veterinária Brasileira. 2019;39:816–22. Abraham S, O’Dea M, Page SW, Trott DJ. Current and future antimicrobial resistance issues for the Australian pig industry. Anim Prod Sci. 2017;57(12):2398. https://doi.org/10.1071/an17358 Moreno-Switt A, Pezoa D, Sepúlveda V, González I, Rivera D, Retamal P, et al. Transduction as a potential dissemination mechanism of a clonal qnrB19-carrying plasmid isolated from Salmonella of multiple serotypes and isolation sources.. Fron Microbiol. 2019;10:2503. MANUAL DE. OIE sobre animales terrestres. 2004. Brucelosis (en línea) Consult. 12. Díaz CA, Est MNR, MV VJV, Ramírez G, Casas GA, Mogollón JD, et al. Revista Colombiana de Ciencias Pecuarias. Revista Colombiana de Ciencias Pecuarias. 2011;24(2):131–44. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 31st Edition. Published 2021. cited 2021 July 22. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338. https://doi.org/10.12688/f1000research.15931.2 PMID: 30254741 Underwood A. BactInspector. Available from: https://gitlab.com/antunderwood/bactinspector. Low AJ, Koziol AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ. 2019;7:e6995. https:// doi.org/10.7717/peerj.6995 PMID: 31183253 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404 Ondov B, Treangen T, Melsted P, Mallonee A, Bergman N, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Geno Biol. 2016;17(132). https://doi.org/10.1186/ s13059-016-0997-x PMID: 27323842 Li H. Seqtk;. Available from: https://github.com/lh3/seqtk. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. https://doi.org/10.1093/bioinformatics/btr507 PMID: 21903629 Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error correction without counting. Geno Biol. 2014;15(509). Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. https://doi.org/10.1093/bioinformatics/btt086 PMID: 23422339 Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom. 2017;3(10):e000131. https://doi. org/10.1099/mgen.0.000131 PMID: 29177089 Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4. https://doi. org/10.1093/jac/dks261 Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–903. https://doi.org/10.1128/AAC.02412-14 PMID: 24777092 Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016;44(D1):D694-7. https://doi.org/10.1093/nar/gkv1239 PMID: 26578559 Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018 Sep 24;3:124. https://doi. org/10.12688/wellcomeopenres.14826.1 PMID: 30345391 Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ, Nash JHE, et al. The salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft salmonella genome assemblies. PLoS One. 2016;11(1):e0147101. https://doi.org/10.1371/journal. pone.0147101 PMID: 26800248 Zhang S, den Bakker HC, Li S, Chen J, Dinsmore BA, Lane C, et al. SeqSero2: rapid and improved salmonella serotype determination using whole-genome sequencing data. Appl Environ Microbiol. 2019;85(23):e01746-19. https://doi.org/10.1128/AEM.01746-19 PMID: 31540993 Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2019;30(1):138–52. https://doi.org/10.1101/gr.251678.119 Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PMID: 20224823 Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018;28(9):1395–404. https://doi.org/10.1101/gr.232397.117 PMID: 30049790 Zeng Y-B, Xiong L-G, Tan M-F, Li H-Q, Yan H, Zhang L, et al. Prevalence and antimicrobial resistance of salmonella in pork, chicken, and duck from retail markets of China. Foodborne Pathog Dis. 2019;16(5):339–45. https://doi.org/10.1089/fpd.2018.2510 PMID: 31013442 Ávila E, Cardona L, Fandiño L, Barragán I. Prevalencia de Salmonella spp. en carne porcina, plantas de beneficio y expendios del Tolima. Orinoquia. 2013;17(1):59–68. Ayala-Romero C, Ballen-Parada C, Rico-Gaitan M, Chamorro-Tobar I, Zambrano-Moreno D, Poutou-Piñales R, et al. Prevalencia de Salmonella spp., en ganglios mesentéricos de porcinos en plantas de beneficio Colombianas. Rev MVZ Córdoba. 2018;23(1):6447–86. https://doi.org/10.21897/ rmvz.1242 Giraldo-Cardona JP, Gualdrón-Ramírez D, Chamorro-Tobar I, Pulido-Villamarín A, Santamaría-Durán N, Castañeda-Salazar R, et al. Salmonella spp. prevalence, antimicrobial resistance and risk factor determination in Colombian swine farms. Pesq Vet Bras. 2019;39(10):816–22. https://doi. org/10.1590/1678-5150-pvb-6156 Campos J, Mourão J, Peixe L, Antunes P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens. 2019;8(1):19. https://doi. org/10.3390/pathogens8010019 PMID: 30700039 Zhou Z, Jin X, Zheng H, Li J, Meng C, Yin K, et al. The prevalence and load of Salmonella, and key risk points of Salmonella contamination in a swine slaughterhouse in Jiangsu province, China. Food Control. 2018;87:153–60. https://doi.org/10.1016/j.foodcont.2017.12.026 Bearson SMD. Salmonella in Swine: Prevalence, Multidrug Resistance, and Vaccination Strategies. Annu Rev Anim Biosci. 2022;10:373–93. https://doi.org/10.1146/annurev-animal-013120-043304 PMID: 34699256 Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis. 2019. https://doi.org/10.1089/fpd.2019.2676 PMID: 31532231 Multistate CDC. Outbreak of human Salmonella Altona and Salmonella johannesburg infections linked to chicks and ducklings (final update). CDC. 2011. Hirai N, Kasahara K, Yoshihara S, Nishimura T, Ogawa Y, Ogawa T. Spinal epidural abscess caused by non-typhoidal Salmonella: a case report and literature review. J Infect Chemother. 2020. https://doi. org/10.1016/j.jiac.2020.05.016 PMID: 32591325 Qin X, Yang M, Cai H, Liu Y, Gorris L, Aslam MZ, et al. Antibiotic resistance of salmonella typhimurium monophasic variant 1,4,[5],12:i:-in China: a systematic review and meta-analysis. Antibiotics (Basel). 2022;11(4):532. https://doi.org/10.3390/antibiotics11040532 PMID: 35453283 Elnekave E, Hong S, Taylor A, Boxrud D, Rovira A, Alvarez J. Tracing the evolutionary history of an emerging Salmonella 4,[5],12:i:- clone in the United States.. Virus Evolution. 2019;5:19–20. Yang X, Wu Q, Zhang J, Huang J, Chen L, Wu S, et al. Prevalence, bacterial load, and antimicrobial resistance of salmonella serovars isolated from retail meat and meat products in China. Front Microbiol. 2019;10:2121. https://doi.org/10.3389/fmicb.2019.02121 PMID: 31608021 Possebon F, Tiba Casas M, Nero L, Yamatogi R, Araújo Jr. J, Pinto J de A. Prevalence, antibiotic resistance, PFGE and MLST characterization of Salmonella in swine mesenteric lymph nodes. Prev Vet Med. 2020;179:105024. https://doi.org/10.1016/j.prevetmed.2020.105024 PMID: 32417637 Wang R, Chen M, Feng F, Zhang J, Sui Q, Tong J, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour Technol. 2017;238:57–69. https://doi.org/10.1016/j.biortech.2017.03.134 PMID: 28432950 Ricker N, Trachsel J, Colgan P, Jones J, Choi J, Lee J, et al. Toward antibiotic stewardship: route of antibiotic administration impacts the microbiota and resistance gene diversity in swine feces. Front Vet Sci. 2020;7:255. https://doi.org/10.3389/fvets.2020.00255 PMID: 32509805 Debroy R, Miryala SK, Naha A, Anbarasu A, Ramaiah S. Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Microb Pathog. 2020;142:104096. https://doi.org/10.1016/j.micpath.2020.104096 PMID: 32097747 Li Q, Yin J, Li Z, Li Z, Du Y, Guo W, et al. Serotype distribution, antimicrobial susceptibility, antimicrobial resistance genes and virulence genes of Salmonella isolated from a pig slaughterhouse in Yangzhou, China. AMB Express. 2019;9(1):210. https://doi.org/10.1186/s13568-019-0936-9 PMID: 31884559 Wang W, Chen J, Shao X, Huang P, Zha J, Ye Y. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Sci Nutr. 2021;9(9):4701–10. https://doi. org/10.1002/fsn3.2266 PMID: 34531984 Liu Q, Chen W, Elbediwi M, Pan H, Wang L, Zhou C, et al. characterization of salmonella resistome and plasmidome in pork production system in Jiangsu, China. Front Vet Sci. 2020;7:617. https://doi. org/10.3389/fvets.2020.00617 PMID: 33062654 Adel WA, Ahmed AM, Hegazy Y, Torky HA, Shimamoto T. High prevalence of ESBL and plasmidmediated quinolone resistance genes in salmonella enterica isolated from retail meats and slaughterhouses in Egypt. Antibiotics (Basel). 2021;10(7):881. https://doi.org/10.3390/antibiotics10070881 PMID: 34356803 Pitout JDD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8(3):159–66. https://doi.org/10.1016/S1473- 3099(08)70041-0 PMID: 18291338 Riaño I, Moreno MA, Teshager T, Sáenz Y, Domínguez L, Torres C. Detection and characterization of extended-spectrum beta-lactamases in Salmonella enterica strains of healthy food animals in Spain. J Antimicrob Chemother. 2006;58(4):844–7. https://doi.org/10.1093/jac/dkl337 PMID: 16935865 Mąka Ł, Popowska M. Antimicrobial resistance of Salmonella spp. isolated from food. Rocz Panstw Zakl Hig. 2016;67(4):343–58. PMID: 27922740 Fernandes L, Centeno MM, Couto N, Nunes T, Almeida V, Alban L, et al. Longitudinal characterization of monophasic Salmonella Typhimurium throughout the pig’s life cycle. Vet Microbiol. 2016;192:231–7. https://doi.org/10.1016/j.vetmic.2016.07.018 PMID: 27527788 Michael GB, Butaye P, Cloeckaert A, Schwarz S. Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Microbes Infect. 2006;8(7):1898–914. https://doi.org/10.1016/j. micinf.2005.12.019 PMID: 16716631 Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol. 2013;4:135. https://doi.org/10.3389/fmicb.2013.00135 PMID: 23734150 Serio AW, Magalhães ML, Blanchard JS, Connolly LE. Aminoglycosides: mechanisms of action and resistance. Antimicrobial Drug Resistance. 2017;213–29. https://doi. org/10.1007/978-3-319-46718-4_14 de Melo ANF, Monte DFM, de Souza Pedrosa GT, Balkey M, Jin Q, Brown E, et al. Genomic investigation of antimicrobial resistance determinants and virulence factors in Salmonella enterica serovars isolated from contaminated food and human stool samples in Brazil. Int J Food Microbiol. 2021;343:109091. https://doi.org/10.1016/j.ijfoodmicro.2021.109091 PMID: 33639477 Cao G, Balkey M, Jin Q, Brown E, Allard M, de Melo ANF, et al. Genomic and phylogenetic analysis of Salmonella enterica serovar Enteritidis strains linked to multiple outbreaks in Brazil. Lett Appl Microbiol. 2023;76(1):ovac045. https://doi.org/10.1093/lambio/ovac045 PMID: 36688781 Sinwat N, Angkittitrakul S, Coulson KF, Pilapil FMIR, Meunsene D, Chuanchuen R. High prevalence and molecular characteristics of multidrug-resistant Salmonella in pigs, pork and humans in Thailand and Laos provinces. J Med Microbiol. 2016;65(10):1182–93. https://doi.org/10.1099/jmm.0.000339 PMID: 27542886 He J, Sun F, Sun D, Wang Z, Jin S, Pan Z, et al. Multidrug resistance and prevalence of quinolone resistance genes of Salmonella enterica serotypes 4,[5],12:i:- in China. Int J Food Microbiol. 2020;330:108692. https://doi.org/10.1016/j.ijfoodmicro.2020.108692 PMID: 32521291 Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmidmediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50(4):1178–82. https:// doi.org/10.1128/AAC.50.4.1178-1182.2006 PMID: 16569827 Ruiz J. Transferable mechanisms of quinolone resistance from 1998 onward. Clin Microbiol Rev. 2019;32(4): e00007–19. https://doi.org/10.1128/CMR.00007-19 PMID: 31413045 Davies N, Jørgensen F, Willis C, McLauchlin J, Chattaway MA. Whole genome sequencing reveals antimicrobial resistance determinants (AMR genes) of Salmonella enterica recovered from raw chicken and ready-to-eat leaves imported into England between 2014 and 2019. J Appl Microbiol. 2022;133(4):2569–82. https://doi.org/10.1111/jam.15728 PMID: 35880358 Hughes D, Andersson DI. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):374–91. https://doi.org/10.1093/femsre/fux004 PMID: 28333270 Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health. 2020. Vinayamohan PG, Pellissery AJ, Venkitanarayanan K. Role of horizontal gene transfer in the dissemination of antimicrobial resistance in food animal production. Curr Opin Food Sci. 2022;47:100882. https://doi.org/10.1016/j.cofs.2022.100882 Baker KS, Dallman TJ, Field N, Childs T, Mitchell H, Day M, et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat Commun. 2018;9(1):1462. https://doi. org/10.1038/s41467-018-03949-8 PMID: 29654279 Postma M, Vanderhaeghen W, Sarrazin S, Maes D, Dewulf J. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health. 2017;64(1):63–74. https://doi.org/10.1111/zph.12283 PMID: 27362766 Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, et al. Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control. 2015;4(1). https://doi.org/10.1186/ s13756-015-0091-2 Donado-Godoy P, Castellanos R, León M, Arevalo A, Clavijo V, Bernal J, et al. The Establishment of the colombian integrated program for antimicrobial resistance surveillance (COIPARS): a pilot project on poultry farms, slaughterhouses and retail market. Zoonoses Public Health. 2015;62 Suppl 1:58–69. https://doi.org/10.1111/zph.12192 PMID: 25903494 Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6:47. https://doi.org/10.1186/ s13756-017-0208-x PMID: 28515903 Berndtson AE. Increasing globalization and the movement of antimicrobial resistance between countries. Surg Infect (Larchmt). 2020;21(7):579–85. https://doi.org/10.1089/sur.2020.145 PMID: 32434446 Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176–87. https://doi. org/10.1016/S0140-6736(15)00473-0 PMID: 26603922 Proroga Y, Mancusi A, Peruzy M, Carullo M, Montone A, Fulgione A. Characterization of Salmonella Typhimurium and its monophasic variant 1,4,[5],12:i:- isolated from different sources. Folia Microbiologica. 2019;64(6):711–8. https://doi.org/10.1007/s12223-019-00683-6 PMID: 30721446 Hernández-Ledesma A, Cabrera-Díaz E, Arvizu-Medrano SM, Gómez-Baltazar A, Hernández- Iturriaga M, Godínez-Oviedo A, et al. Virulence and antimicrobial resistance profiles of Salmonella enterica isolated from foods, humans, and the environment in Mexico. Int J of Food Microbiol. 2023;391:110135. https://doi.org/10.1016/j.ijfoodmicro.2023.110135 PMID: 36827747 Balasubramanian R, Im J, Lee J-S, Jeon HJ, Mogeni OD, Kim JH, et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother. 2019;15(6):1421–6. https://doi.org/10.1080/21645515.2018.1504717 PMID: 30081708 Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá Colombia Public Library of Science PLoS Neglected Tropical Diseases; Vol. 19, Núm. 1 (2025): PLoS Neglected Tropical Diseases (Jan.);p. 1 - 18.