Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión
El establecimiento de la simbiosis planta-hongos formadores de micorrizas Arbusculares (HFMA) requiere procesos armónicos a nivel espacio-temporal, que dependen de señales para el reconocimiento, colonización e intercambio bidireccional de nutrientes. Las plantas presentan respuestas de defensa fren...
Main Authors: | , |
---|---|
Format: | article |
Language: | Español |
Published: |
SciELO
2025
|
Subjects: | |
Online Access: | http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123-34752012000100025&lng=en&nrm=iso http://hdl.handle.net/20.500.12324/40960 |
id |
RepoAGROSAVIA40960 |
---|---|
record_format |
dspace |
institution |
Corporación Colombiana de Investigación Agropecuaria |
collection |
Repositorio AGROSAVIA |
language |
Español |
topic |
Investigación agropecuaria - A50 Hongo Micorrizas arbusculares Mecanismo de defensa Simbiosis Transversal http://aims.fao.org/aos/agrovoc/c_3145 http://aims.fao.org/aos/agrovoc/c_1415699873241 http://aims.fao.org/aos/agrovoc/c_35269 http://aims.fao.org/aos/agrovoc/c_7563 |
spellingShingle |
Investigación agropecuaria - A50 Hongo Micorrizas arbusculares Mecanismo de defensa Simbiosis Transversal http://aims.fao.org/aos/agrovoc/c_3145 http://aims.fao.org/aos/agrovoc/c_1415699873241 http://aims.fao.org/aos/agrovoc/c_35269 http://aims.fao.org/aos/agrovoc/c_7563 Ramírez Gómez, Margarita Rodríguez, Alia Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
description |
El establecimiento de la simbiosis planta-hongos formadores de micorrizas Arbusculares (HFMA) requiere procesos armónicos a nivel espacio-temporal, que dependen de señales para el reconocimiento, colonización e intercambio bidireccional de nutrientes. Las plantas presentan respuestas de defensa frente a posibles organismos invasores; sin embargo, frente a HFMA estas son débiles, localizadas y no impiden la colonización del hongo. Los beneficios de la simbiosis generalmente se asocian a nutrición vegetal, aunque, también está relacionada con el incremento de la tolerancia-resistencia de plantas a los estreses bióticos. La resistencia inducida HFMA (MIR) es importante en el control de patógenos foliares, comedores de hojas y necrótrofos, encontrándose protección de plantas micorrizadas tanto a nivel local como sistémico, relacionada con los niveles de ácido jasmónico en tejidos. Un mecanismo en la MIR está asociado con el “priming”, que permite una rápida y eficiente respuesta de defensa de plantas micorrizadas. Se han planteado posibles mecanismos de atenuación de las respuestas de defensa, considerando: activación de supresores de defensa; plantas que producen respuestas de defensa frente a HFMA y otras que no las producen, y plantas que suprimen las respuestas de defensa en la simbiosis. Aunque el control de la simbiosisestá regulado básicamente por la planta, aún se desconoce el papel de los HFMA en el debilitamiento de las respuestas de defensa. Recientemente, se ha dado un avance importante en entender los mecanismos mediante los cuales se establece y mantiene la biotrofía del hongo, al describirse la proteína SP7 que interactúa con el factor de transcripción PR, ERF19 en el núcleo de la célula vegetal. Se ha sugerido que SP7 es un efector que actúa oponiéndose al programa de inmunidad de la planta. Este documento está orientado a hacer una revisión de las respuestas de defensa que presentan las plantas bajo condiciones de simbiosis con HFMA, con el fin tener un acercamiento sobre los posibles mecanismos de atenuación de las mismas, de forma tal que permite el establecimiento de la simbiosis. Además, se desea tener una aproximación al tema de la capacidad de defensa que presenta la planta micorrizada frente a un amplio grupo de organismos patógenos. |
format |
article |
author |
Ramírez Gómez, Margarita Rodríguez, Alia |
author_facet |
Ramírez Gómez, Margarita Rodríguez, Alia |
author_sort |
Ramírez Gómez, Margarita |
title |
Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
title_short |
Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
title_full |
Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
title_fullStr |
Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
title_full_unstemmed |
Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
title_sort |
mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión |
publisher |
SciELO |
publishDate |
2025 |
url |
http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123-34752012000100025&lng=en&nrm=iso http://hdl.handle.net/20.500.12324/40960 |
work_keys_str_mv |
AT ramirezgomezmargarita mecanismosdedefensayrespuestasdelasplantasenlainteraccionmicorricicaunarevision AT rodriguezalia mecanismosdedefensayrespuestasdelasplantasenlainteraccionmicorricicaunarevision AT ramirezgomezmargarita plantdefensemechanismsandresponsesinthearbuscularmycorrhizalsymbiosisareview AT rodriguezalia plantdefensemechanismsandresponsesinthearbuscularmycorrhizalsymbiosisareview |
_version_ |
1842256154744324096 |
spelling |
RepoAGROSAVIA409602025-05-30T03:02:32Z Mecanismos de defensa y respuestas de las plantas en la interacción micorrícica: una revisión Plant defense mechanisms and responses in the arbuscular mycorrhizal symbiosis: a review. Ramírez Gómez, Margarita Rodríguez, Alia Investigación agropecuaria - A50 Hongo Micorrizas arbusculares Mecanismo de defensa Simbiosis Transversal http://aims.fao.org/aos/agrovoc/c_3145 http://aims.fao.org/aos/agrovoc/c_1415699873241 http://aims.fao.org/aos/agrovoc/c_35269 http://aims.fao.org/aos/agrovoc/c_7563 El establecimiento de la simbiosis planta-hongos formadores de micorrizas Arbusculares (HFMA) requiere procesos armónicos a nivel espacio-temporal, que dependen de señales para el reconocimiento, colonización e intercambio bidireccional de nutrientes. Las plantas presentan respuestas de defensa frente a posibles organismos invasores; sin embargo, frente a HFMA estas son débiles, localizadas y no impiden la colonización del hongo. Los beneficios de la simbiosis generalmente se asocian a nutrición vegetal, aunque, también está relacionada con el incremento de la tolerancia-resistencia de plantas a los estreses bióticos. La resistencia inducida HFMA (MIR) es importante en el control de patógenos foliares, comedores de hojas y necrótrofos, encontrándose protección de plantas micorrizadas tanto a nivel local como sistémico, relacionada con los niveles de ácido jasmónico en tejidos. Un mecanismo en la MIR está asociado con el “priming”, que permite una rápida y eficiente respuesta de defensa de plantas micorrizadas. Se han planteado posibles mecanismos de atenuación de las respuestas de defensa, considerando: activación de supresores de defensa; plantas que producen respuestas de defensa frente a HFMA y otras que no las producen, y plantas que suprimen las respuestas de defensa en la simbiosis. Aunque el control de la simbiosisestá regulado básicamente por la planta, aún se desconoce el papel de los HFMA en el debilitamiento de las respuestas de defensa. Recientemente, se ha dado un avance importante en entender los mecanismos mediante los cuales se establece y mantiene la biotrofía del hongo, al describirse la proteína SP7 que interactúa con el factor de transcripción PR, ERF19 en el núcleo de la célula vegetal. Se ha sugerido que SP7 es un efector que actúa oponiéndose al programa de inmunidad de la planta. Este documento está orientado a hacer una revisión de las respuestas de defensa que presentan las plantas bajo condiciones de simbiosis con HFMA, con el fin tener un acercamiento sobre los posibles mecanismos de atenuación de las mismas, de forma tal que permite el establecimiento de la simbiosis. Además, se desea tener una aproximación al tema de la capacidad de defensa que presenta la planta micorrizada frente a un amplio grupo de organismos patógenos. 2025-05-29T19:45:47Z 2025-05-29T19:45:47Z 2012-07 2012 article Artículo científico http://purl.org/coar/resource_type/c_2df8fbb1 info:eu-repo/semantics/article https://purl.org/redcol/resource_type/ART http://purl.org/coar/version/c_970fb48d4fbd8a85 http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0123-34752012000100025&lng=en&nrm=iso 0123-3475 http://hdl.handle.net/20.500.12324/40960 reponame:Biblioteca Digital Agropecuaria de Colombia instname:Corporación colombiana de investigación agropecuaria AGROSAVIA spa Colombiana de Biotecnología 14 1 271 284 Abdel-Fattah G.M. y Shabana Y.M. 2002. Efficacy of arbuscular mycorrhizal fungus (Glomus clarum) in protection of cowpea plants from root rot pathogen Rhizoctonia solani. J Plant Dis Protect. 109(2):207-215. Abdel-Fattah G.M., El-Haddadb S.A., Hafezc E.E., Rashadd Y.M. 2011. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research. 166: 268-281. Akiyama K., Matsuzaki K., Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435: 824-827. Bago B., Pfeffer E., Shachar Y. 2000. Carbon Metabolism and Transport in Arbuscular Mycorrhizal. Plant Physiol. 124: 949-958. Baldwin I.T., Halitschke R., Paschold A., von Dahl C., Preston C.A. 2006. Volatile signaling in plant-plant interactions: “Talking trees” in the genomic era. Science. 311: 812-815. Bindschedler L.V., Dewdney J., Blee K.A., Stone J.M., Asai T., Plotnikov J., Denoux C., Hayes T., Gerrish C., Davies D.R., Ausubel F.M., Bolwell G.P. 2006. Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant Journal. 47: 851–863. Blee K.A., Anderson A.J. 2000. Defence responses in plants to arbuscular mycorrhizal fungi. En: Podila G.K., Douds D., eds. Current advances in mycorrhizae research. Minnesota, USA: The Am. Phytopathol. Soc, 27–44. Blilou I., Ocampo J., García-Garrido J. 2000 (a). Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with arbuscular mycorrhizal Glomus mosseae. Mycol. Res. 104: 722–725. Blilou I., Ocampo J., García-Garrido J. 2000 (b). Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonialyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J. Exp. Bot. 51: 1969–1977. Boller, T., Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60: 379–406. Bonfante P., Genre A. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends in Plant Science. 13(9): 492-498. Bonfante P., Requena N. 2011. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology. 14(4):451–457. Bostock R. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytophatol. 43: 545-580. Brooks D.M., Bender C.L., Kunkel B.N. 2005. The Pseudomona syringae prhytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6: 629-639. Cameron R.K., Paiva N.L., Lamb C.J., Dixon R.A. 1999. Accumulation of salicylic acid and PR gene transcripts in relation to the systemic acquired resistence (SAR) response by Pseudomonas syringae pv tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55: 121-130. Cao H., Bowling S.A., Gordon A.S., Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 8:1583-1592. Chandanie W.A., Kubota I.T.O.M., Hyakumachi M.M. 2006. Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and disease suppression of cucumber (Cucumis sativus L.). Annu Rep Int Res Inst Environ Sci. 24: 91-102. Chandanie W.A., Kubota I.T.O.M., Hyakumachi M.M. 2006. Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and disease suppression of cucumber (Cucumis sativus L.). Annu Rep Int Res Inst Environ Sci. 24: 91-102. Chisholm S.T., Coaker G., Day B., Staskawicz B.J. 2006. Host microbe interactions: shaping the evolution of the plant immune response. Cell. 124: 803-814. Clarke J.D.,Volko S.M., Ledford H., Ausubel FM., Dong X. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr induced resistance in Arabidopsis. Plant Cell. 12:2175–90. Conhard U., Pieterse C.M. and Mauch-Mani B. 2002. Priming in plant pathogen interactions. Trend Plant Sci, 7: 210-216. Conhard U., Beckers G., Flors V., García-Agustín P., Jakab G., Mauch F., Newman M.A., Pieterse C., Poinssot B., Pozo M.J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., Mauch-Mani B. 2006. Priming: getting ready for battle. Mol Plant-Microbe Interact. 19, 1062-1071. Cordier C., Pozo M.J., Barea J.M., Gianinazzi S., Gianinazzi- Pearson V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11:1017-1028. Dangl J.L., Jones J.D. 2001. Plant pathogens and integrated defence responses to infection. Nature. 411: 826–833. Despres C., Chubak C., Rochon A., Clark R., Bethune T. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell. 15:2181–2191. Despres C., DeLong C., Glaze S., Liu E., Fobert P.R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell. 12:279–290. Desveaux D., Subramaniam R., Despres C., Mess J.N., Levesque C. 2004. A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev. Cell. 6:229–240. Delaux, P., Nanda A.K., Mathé C., Sejalon-Delmas N. and Dunand C. 2012. Molecular and biochemical aspects of plant terrestrialization. Perspectives in Plant Ecology, Evolution and Systematic. 14(1): 49– 59. De Vos M., Van Oosten V.R., Van Poecke R.M.P., Van Pelt J.A., Pozo M.J., Mueller M.J., Buchala A.J., Métraux J.P., Van Loon LC., Dicke M., Pieterse C.M.J. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact. 18: 923-937. De Vos M., Van Zaanen W., Koornneef A., Korzelius J.P., Dicke M., Van Loon L.C., Pieterse C.M.J. 2006. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 142: 352-363. Dicke M., Agrawal A.A., Bruin J. 2003. Plants talk, but are they deaf? Trend Plants Science. 8: 403-405. Dicke M., Hilker M. 2003. Induced plant defenses: form molecular biology to evolutionary ecology. Basic Appl. Ecol. 4: 3-14. Dumas-Gaudot E., Gollotte A., Cordier C., Gianinazzi S. and Gianinazzi- Pearson V. 2000. Modulation of host defence systems. En: Arbuscular Mycorrhizas: Physiology and Function. Academic Publishers. 173-200. Durrant W.E., Dong X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol 42:185-209. El-Khallal SM. 2007. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid and salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Aust J Basic Appl Sci. 1(4): 717-732. Emiliani, G., Fondi, M., Fani, R., Gribaldo, S., 2009. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biology Direct. 4:7. Falk A., Feys B.J., Frost L.N., Jones J.D., Daniels M.J., Parker J.E. 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci USA. 96 (6):3292–3297. Fester T., Hause G. 2005. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza. 15:373–379. Fisher R.F., Long S.R. 1992. Rhizobium – plant signal exchange. Nature. 357:655–660. Foreman J., Demidchik V., Bothwell J.H.F., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D.G., Davies J.M., Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 422: 442–446. Fritz M., Jakobsen I., Lyngkjaer M.F., Thordal-Christensen H., Pons-Kuehnemann J. 2006. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza. 16:413-419. Gadkar V., Schwartz R., Kunik T., Kapulnik Y. 2001. Arbuscular Mycorrhizal Fungal Colonization. Factors Involved in Host Recognition. Plant Physiology. 127: 1493–1499. Gange A. 2006. Insect–mycorrhizal interactions patterns processes, and consequences. En: Indirect Interaction Webs: Nontrophic Linkages Through Induced Plant Traits. Cambridge U. Press; 2006:124-144. García-Garrido J.M., Ocampo J.A. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany. 53 (373): 1377-1386. García-Garrido J.M., Tribak M., Rejón-Palomares A., Ocampo J.A., García-Romera I. 2000. Hydrolitic enzymes and ability of arbuscular mycorrhizal fungi to colonize roots. J. of Experimental Botany. 51: 1443–1448. Genre A., Chabaud M., Timmers T., Bonfante P., Barkerb D. 2005. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in M. truncatula Root Epidermal Cells before Infection. Plant Cell. 17:3489-3499. Genre A., Chabaud M., Faccio A., Barker D., Bonfante P. 2008. Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota. The Plant Cell. 20:1407-1420. Ginzberg I, David R, Shaul O, Elad Y, Wininger S, Ben-Dor B, Badani H, Fang Y, Van Rhijn P, Li Y, Hirsch A, Kapulnik Y. 1998. Glomus intraradices colonization regulates gene expression in tobacco roots. Symbiosis. 25: 145-147. Glazebrook J., Chen W., Estes B., Chang H.S., Nawrath C. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34:217–228. Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopat. 43: 205-227. Gollotte A., Gianinazzi-Pearson V., Giovannetti M., Sbrana C., Avio L., Gianinazzi S. 1993. Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a ‘‘locus a’’ mycS mutant of Pisum sativum L. Planta. 191: 112-122. Gough, C., Cullimore, J. 2011. Lipo-chitooligosaccharide signaling in endosymbiotic plant–microbe interactions. Mol. Plant Microbe Interact. 24: 867-878. Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y. 2001. The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices. Plant Sci.160(5):925-932. Guerrieri E., Lingua G., Digilio M.C., Massa N., Berta G. 2004. Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol. Entomol. 29:753-756. Guillon C., St-Arnaud M., Hamel C., Jabaji-Hare S. 2002. Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Canadian Journal of Botany. 80(3):305— 315. Gust A., Willmann R., Desaki Y., Grabherr H.M., Nürnberger T. 2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science. (In press). Hacisalihoglu G., Duke E., Longo L. 2005. Differential response of common bean genotypes to mycorrhizal colonization. Proc Fla State Hortic Soc.118:150—152. Harley J.L., Smith S.E. 1983. Mycorrhizal Symbiosis. Academic Press, London. Harrier L.A., Watson C.A. 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci. 60(2): 149—157. Harrison M.J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59:19-42. Hause B., Mrosk C., Isayenkov S., Dieter S. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochem. 68(1): 101-110. Howe G.A. 2004. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation. 23 (3): 223-237. Hu J., Lin X., Wang J., Shen W., Wu S., Peng S., Mao T. 2010. Arbuscular Mycorrhizal Fungal Inoculation Enhances Suppression of Cucumber Fusarium Wilt in Greenhouse Soils. Pedosphere. 20(5): 586–593. Jasper D., Robson A., Abbott L. 1979. Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biology and Biochemistry. 11: 501–505. Kaku H., Nishizawa Y., Ishii-Minami N., Akimoto-Tomiyama C., Dohmae N., Takio K., Minami E., Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A. 103 (29): 11086–11091. Kauss H., Jeblick W., Ziegler J., Krabler W. 1994. Pretreatment of parsley (Petroselinum crispum L) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol. 105: 89-104. Kessler A., Halitschke R., Diezel C., Baldwin I.T. 2006. Priming of plant defenses responses in nature by airborne signaling between Artemisa tridentate and Nicotiana attenuate. Oecologia 148 (2): 280-292. Kishimoto K., Kouzai Y., Kaku H., Shibuya, N., Minami E., Nishizawa Y. 2010. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. The Plant Journal. 64 (2): 343–354. Kloppholz S., Kuhn H., Requena N. 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol. 21: 1204-1209. Kosuta S., Chabaud M., Lougnon G., Gough C., Dénarié J., Barker D., Bécard G. 2003. A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots of M. truncatula. Plant Physiol. 131: 952-962. Kump L.R., 2008. The rise of atmospheric oxygen. Nature. 451: 277–278. Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology. 48: 251–275. Lambais M.R. 2000. Regulation of plant defence-related genes in arbuscular mycorrhizae. En: Current advances in mycorrhizae research. Minnesota, USA. The American Phytopathological Soc. 45–59. Li J., Brader G., Palva E.T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate –mediated and salicylate-medaiated signals in plant defense. Plant cell. 16: 319-331. Li H.Y., Yang G.D., Shu H.R., Yang Y.T., Ye B.X., Nishida I., Zheng C.C. 2006. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol. 47:154-163. Limpens E., Franken C., Smit P., Willemse J., Bisseling T., Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 302, 630–633. Liu J., Blaylock L., Endre G., Cho J., Town C., Harrison M. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell. 15: 2106-2123. Liu J., Maldonado I., Lopez M., Cheung F., Town C., Harrison M. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 50 (3):529-544. Lorenzo O., Piqueras R., Sánchez-Serrano J.J., Solano R. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 15 (1): 165-178 Madsen E.B., Madsen L.H., Radutoiu S., Olbryt M., Rakwalska M., Szczyglowski K., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 425: 637– 640. Miya A., Albert P., Shinya T., Desaki Y., Ichimura K., Shirasu K., Narusaka Y., Kawakami N., Kaku H., Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA. 104: 19613–19618. Mur L., Kenton A., Atzorn R., Miersch O., Wasternack C. 2006. The outcomes of concentration-specific interaction between salicylate and jasmonate signal include synergy, antagonism and oxidative stress leading to cell death. Plant Physiol. 140: 249-262. Mur L.A.J., Brown I.R., Darby R.M., Bestwick C.S., Bi Y.M., Mansfield J.W., Draper J. 1996. Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J. 9: 559-571. Nawrath C., Heck S., Parinthawong N., Metraux J.P. 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell. 14:275–286. Nomura K., Melotto M., He S.Y. 2005. Supression of host defense in compatible plant- Pseudomonas syringae interactions. Curr Opinion Plant Biol. 8: 361-368. Norman-Setterblad C., Vidal S., Palva E.T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe. 13(4):430-438. Oldroyd G., Downie J.A. 2006. Nuclear calcium changes at the core of symbiosis signaling. Curr Opin Plant Biol. 9:351–357. Oldroyd G., Harrison M. and Paszkowski U. 2009. Reprogramming Plant Cells for endosymbiosis. Science. 324: 753-754. Op den Camp R., Streng A., De Mita S., Cao Q., Polone E., Liu W., Ammiraju J., Kudrna D., Wing R., Untergasser A., Bisseling T., Geurts R. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science. 331(6019): 909-912. Parniske M. 2000. Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease? Curr Opin Plant Biol. 3:320–328. Parniske M. 2004. Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opinion Plant Biol. 7:414- 421. Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 6: 763-775. Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., Schroeder J.I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 406: 731–734. Pieterse C., Van Wees S., Hoffland E., Van Pel J., Van Loon L. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell. 8:1225-1237. Pieterse C., Van Pelt J., Ton J, Parchmann S., Mueller M., Buchala A., Métraux J., Van Loon L. 2000. Rhizobacteria- mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol. 57:123-134. Pieterse C., Van Wees S., Ton J., Van Pelt J., Van Loon L. 2002. Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 4:535-544. Pieterse C., Dicke M. 2007. Plant interactions with microbes and insects from molecular mechanisms to ecology. Trends in Plant Science. 12 (12): 564-569. Pozo M., Azcón-Aguilar C., Dumas E. and Barea J. 1999. β1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci. 141:149-157. Pozo M., Cordier C., Dumas-Gaudot E., Gianinazzi S., Barea J. and Azcón-Aguilar C. 2002. Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot. 53: 525-534. Pozo M., Van Loon L., Pieterse C. 2004. Jasmonates Signals in plant-microbe interactions. J Plant Growth Regul. 23:211-222. Pozo M., Azcón-Aguilar C. 2007. Unraveling mycorrhizal-induced resitance. Curr Opinion in Plant Biology. 10: 393-398. Reinhardt D. 2007. Programming good relations-development of the arbuscular mycorrhizal symbiosis. Curr Op Plant Biol. 10:98-105. Remy W., Taylor T.N., Hass H., Kerp H. 1994. Four hundred million year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA. 91: 11841-11843. Radutoiu S., Madsen L.H., Madsen E.B., Felle H.H., Umehara Y., Grønlund M., Sato S., Nakamura Y., Tabata S., Sandal N., Stougaard J. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature. 425: 585–592. Requena N., Serrano E., Ocon A., Breuninger M. 2007. Plant signals and fungal perception during arbuscular mycorrhizae establishment. Phytochemistry. 68: 33–40. Salzer P., Boller T. 2000. Elicitor induced reactions in mycorrhizae and their suppression. En: Current Advances in Mycorrhizae Research. APS Press. 1-10. Shah J. 2009. Plants under attack: systemic signals in defence. Current Opinion in Plant Biology. 12:459–464. Sharma D., Kapoor R., Bhatnagar A. K. 2009. Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Europ J Soil Biol. 45(4): 328–333. Shaul O., David R., Sinvani G., Ginzberg I., Ganon D., Wininger S., Ben-Dor B., Badani H., Ovdat N., Kapulnik Y. 2000. Plant defense responses during arbuscular mycorrhizal symbiosis. En: Current Advances in Mycorrhizae Research. APS Pres. 61-68. Shaul O., Galili S., Volpin H., Ginzberg I., Elad Y., Chet I., Kapulnik Y. 1999. Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol. Plant Microbe Interact. 12:1000-1007. Shimizu T., Nakano T., Takamizawa D., Desaki Y., Ishii-Minami N., Nishizawa Y., Minami E., Okada K., Yamane H., Kaku H., Shibuya N. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64: 204–214. Shinshi H., Mohnen D., Meins F. 1987. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci USA. 84: 89–93. Smith S., Read D. 2008. Mycorrhizal Symbiosis. Academic Press. Spoel S., Koornneef A., Claessens S., Korzelius J., Van Pelt J., Mueller M., Buchala A., Métraux J., Brown R., Kazan K. 2003. NPR1 modulates cross-talk between salicylate- and jamonate- dependent defense pathways through a novel function in the cytosol. Plant Cell. 15: 760-770. Spoel, S.H., Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol. 12: 89– 100. Sticher L., Mauch-Mani B., Métraux J.P. 1997. Systemic acquired resistance. Ann Rev Phytopat. 35: 235-270. Torres M.A., Dangl J.L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology. 8: 397–403. Traw M.B., Kim J., Enright S., Cipollini D.F., Bergelson J. 2003. Negative cross – talk between salicylate- and jamonate- mediated pathways in the Wassilewskija ecotype of Arabidospsis thaliana. Mol. Ecol. 12: 1125-1135. Truman W., Bennett M.H., Kubigsteltig I., Turnbull C., Grant M. 2007. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA. 104:1075-1080. Van Loon L.C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 119:243-354. Van Loon L., Bakker P., Pieterse C. 1998. Systemic resistance induced by rhizosphere bacteria. Ann Rev Phyt. 36:453-483. Van Poecke R.P.M., Dicke M. 2004. Indirect defense of plants against herbivores using Arabidopsis thaliana as a model plant. Plant Biol. 6: 387-401. Verhagen B., Glazebrook J., Zhu T., Chang H., Van Loon L., Pieterse C. 2004. The transcriptome of rhizobacteria induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact. 17: 895-908. Vierheilig H., Alt M., Mohr U., Boller T., Wiemken A. 1994. Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J of Plant Physiol. 143 (3): 337–343. Vierheilig H., Piché Y. 2002. Signaling in arbuscular mycorrhiza: facts and hypotheses. En: Flavonoids in the living system. New York: Plenum Press. Vlot A.C., Klessig D.F., Park S.W. 2008. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol. 11(4):436-442. Wan J., Zhang X.C., Neece D., Ramonell K.M., Clough S., Kim S.Y., Stacey M.G., Stacey G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell. 20: 471–481. Wang, F., Lin, X., Yin, R. 2005. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil. 269: 225–232. Wang F. Y., Lin X. G., Yin, R. 2007. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int. J. Phytorem. 9: 345–353. Whipps J. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. 82:1198-1227. Wildermuth M.C., Dewdney J., Wu G., Ausubel F. 2001 Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 414:562– 565. Willmann R., Lajunen H.M., Erbs G., Newman M.A., Kolb D., Tsuda K., Katagiri F., Fliegmann J., Bono J.J., Cullimore J.V., Jehle A.K., Götz F., Kulik A., Molinaro A., Lipka V., Gust A.A., Nürnberger T. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA. 108:19824–19829. Yao M., Desilets H., Charles M., Boulanger R., Tweddell R. 2003. Effect of mycorrhization on the accumulation of rishitin and olavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza. 13:333-336. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol. 20 (1): 10–16. Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf application/pdf C.I Tibaitatá SciELO Colombiana de Biotecnología; Vol. 14, Núm. 1 (2012):Colombiana de Biotecnología (Jul.);p. 271-284. |