Carbon and Nitrogen Allocation between the Sink and Source Leaf Tissue in Response to the Excess Excitation Energy Conditions.

Bibliographic Details
Title: Carbon and Nitrogen Allocation between the Sink and Source Leaf Tissue in Response to the Excess Excitation Energy Conditions.
Authors: Milić, Dejana, Živanović, Bojana, Samardžić, Jelena, Nikolić, Nenad, Cukier, Caroline, Limami, Anis M., Vidović, Marija
Source: International Journal of Molecular Sciences; Feb2023, Vol. 24 Issue 3, p2269, 29p
Subject Terms: FLAVONOID glycosides, CLIMATE extremes, AMINO acids, PHOTOSYSTEMS, GLYCOSIDES, QUERCETIN, LIGNIN structure, PECTINS
Abstract: Plants are inevitably exposed to extreme climatic conditions that lead to a disturbed balance between the amount of absorbed energy and their ability to process it. Variegated leaves with photosynthetically active green leaf tissue (GL) and photosynthetically inactive white leaf tissue (WL) are an excellent model system to study source–sink interactions within the same leaf under the same microenvironmental conditions. We demonstrated that under excess excitation energy (EEE) conditions (high irradiance and lower temperature), regulated metabolic reprogramming in both leaf tissues allowed an increased consumption of reducing equivalents, as evidenced by preserved maximum efficiency of photosystem II (ФPSII) at the end of the experiment. GL of the EEE-treated plants employed two strategies: (i) the accumulation of flavonoid glycosides, especially cyanidin glycosides, as an alternative electron sink, and (ii) cell wall stiffening by cellulose, pectin, and lignin accumulation. On the other hand, WL increased the amount of free amino acids, mainly arginine, asparagine, branched-chain and aromatic amino acids, as well as kaempferol and quercetin glycosides. Thus, WL acts as an important energy escape valve that is required in order to maintain the successful performance of the GL sectors under EEE conditions. Finally, this role could be an adaptive value of variegation, as no consistent conclusions about its ecological benefits have been proposed so far. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Full text is not displayed to guests.
Description
ISSN:16616596
DOI:10.3390/ijms24032269