Academic Journal

Advances in single-molecule junctions as tools for chemical and biochemical analysis.

Bibliographic Details
Title: Advances in single-molecule junctions as tools for chemical and biochemical analysis.
Authors: Dief EM; School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia., Low PJ; School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia., Díez-Pérez I; Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London, UK., Darwish N; School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
Source: Nature chemistry [Nat Chem] 2023 May; Vol. 15 (5), pp. 600-614. Date of Electronic Publication: 2023 Apr 27.
Publication Type: Journal Article; Review; Research Support, Non-U.S. Gov't
Language: English
Journal Info: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101499734 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-4349 (Electronic) Linking ISSN: 17554330 NLM ISO Abbreviation: Nat Chem Subsets: MEDLINE
Imprint Name(s): Original Publication: London : Nature Pub. Group
MeSH Terms: Nanotechnology* , DNA*, Proteins ; RNA ; Electronics
Abstract: The development of miniaturized electronics has led to the design and construction of powerful experimental platforms capable of measuring electronic properties to the level of single molecules, along with new theoretical concepts to aid in the interpretation of the data. A new area of activity is now emerging concerned with repurposing the tools of molecular electronics for applications in chemical and biological analysis. Single-molecule junction techniques, such as the scanning tunnelling microscope break junction and related single-molecule circuit approaches have a remarkable capacity to transduce chemical information from individual molecules, sampled in real time, to electrical signals. In this Review, we discuss single-molecule junction approaches as emerging analytical tools for the chemical and biological sciences. We demonstrate how these analytical techniques are being extended to systems capable of probing chemical reaction mechanisms. We also examine how molecular junctions enable the detection of RNA, DNA, and traces of proteins in solution with limits of detection at the zeptomole level.
(© 2023. Springer Nature Limited.)
References: Sedghi, G. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nanotechnol. 6, 517–523 (2011). (PMID: 2180455510.1038/nnano.2011.111)
Gao, T., Liu, Y., Zhang, X., Bai, J. & Hong, W. Preparation and application of microelectrodes at the single-molecule scale. Chem. Asian J. 16, 253–260 (2021). (PMID: 3337812010.1002/asia.202001372)
Darwish, N., Paddon-Row, M. N. & Gooding, J. J. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc. Chem. Res. 47, 385–395 (2014). (PMID: 2416094510.1021/ar400127g)
Moneo, A. et al. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale 10, 14128–14138 (2018). (PMID: 2999906310.1039/C8NR02347F)
Tuccitto, N. et al. Erratum: highly conductive ∼40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nat. Mater. 8, 359–359 (2009). (PMID: 10.1038/nmat2401)
Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009). (PMID: 2137895510.1038/nchem.392)
Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015). (PMID: 2600599810.1038/nnano.2015.97)
Osorio, H. M. et al. Electrochemical single-molecule transistors with optimized gate coupling. J. Am. Chem. Soc. 137, 14319–14328 (2015). (PMID: 2648825710.1021/jacs.5b08431)
Xu, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005). (PMID: 1572498110.1021/ja042385h)
Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012). (PMID: 10.1002/anie.201107765)
Collier, C. P. et al. Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632–12641 (2001). (PMID: 1174142810.1021/ja0114456)
Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021). (PMID: 10.1038/s41578-021-00302-2)
Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre. Nature 445, 414–417 (2007). (PMID: 1725197610.1038/nature05462)
Bergren, A. J. et al. Musical molecules: the molecular junction as an active component in audio distortion circuits. J. Phys. Condens. Matter 28, 094011 (2016). (PMID: 2687188510.1088/0953-8984/28/9/094011)
Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013). (PMID: 2373621510.1038/nnano.2013.91)
Xiang, D., Jeong, H., Lee, T. & Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845–4867 (2013). (PMID: 2391369710.1002/adma.201301589)
Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016). (PMID: 2697951010.1021/acs.chemrev.5b00680)
Jia, C., Ma, B., Xin, N. & Guo, X. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015). (PMID: 2619002410.1021/acs.accounts.5b00133)
Schlecht, K. D. & Frank, C. W. Tetracycline epimerization kinetics utilizing NMR spectrometry. J. Pharm. Sci. 62, 258–261 (1973). (PMID: 468640010.1002/jps.2600620216)
Blümich, B. & Singh, K. Desktop NMR and its applications from materials science to organic chemistry. Angew. Chem. Int. Ed. 57, 6996–7010 (2018). (PMID: 10.1002/anie.201707084)
Lee, J. H., Okuno, Y. & Cavagnero, S. Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. J. Magn. Reson. 241, 18–31 (2014). (PMID: 24656077396705410.1016/j.jmr.2014.01.005)
Lehr, M. et al. A paramagnetic NMR spectroscopy toolbox for the characterisation of paramagnetic/spin-crossover coordination complexes and metal–organic cages. Angew. Chem. Int. Ed. 59, 19344–19351 (2020). (PMID: 10.1002/anie.202008439)
Peng, L., Clément, R. J., Lin, M. & Yang, Y. in NMR and MRI of Electrochemical Energy Storage Materials and Devices (eds Yang, Y., Fu, R. & Huo, H.) 1–70 (Royal Society of Chemistry, 2021).
Swartjes, A., White, P. B., Bruekers, J. P. J., Elemans, J. A. A. W. & Nolte, R. J. M. Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts. Nat. Commun. 13, 1846 (2022). (PMID: 35388004898684910.1038/s41467-022-29406-1)
Zechel, D. L., Konermann, L., Withers, S. G. & Douglas, D. J. Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry 37, 7664–7669 (1998). (PMID: 960102510.1021/bi980445o)
Polanyi, J. C. & Zewail, A. H. Direct observation of the transition state. Acc. Chem. Res. 28, 119–132 (1995). (PMID: 10.1021/ar00051a005)
Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000). (PMID: 10.1021/jp001460h)
Pakoulev, A. V. et al. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method? Acc. Chem. Res. 42, 1310–1321 (2009). (PMID: 1944547910.1021/ar900032g)
Gu, C., Jia, C. & Guo, X. Single-molecule electrical detection with real-time label-free capability and ultrasensitivity. Small Methods 1, 1700071 (2017). (PMID: 10.1002/smtd.201700071)
Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020). (PMID: 3154558910.1021/acs.accounts.9b00347)
Guo, S., Hihath, J. & Tao, N. Breakdown of atomic-sized metallic contacts measured on nanosecond scale. Nano Lett. 11, 927–933 (2011). (PMID: 2129452410.1021/nl1026748)
McCammon, J. A., Gelin, B. R. & Karplus, M. Dynamics of folded proteins. Nature 267, 585–590 (1977). (PMID: 30161310.1038/267585a0)
Karplus, M. Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers 68, 350–358 (2003). (PMID: 1260179410.1002/bip.10266)
Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018). (PMID: 30236283620909710.1016/j.neuron.2018.08.011)
Garner, M. H. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018). (PMID: 2987540710.1038/s41586-018-0197-9)
Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021). (PMID: 33523936781710310.1126/sciadv.abf0689)
Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021). (PMID: 3447555810.1038/s41565-021-00959-4)
Darwish, N. Chemical mechanisms, one molecule at a time. Nat. Nanotechnol. 16, 1176–1177 (2021). (PMID: 3447555710.1038/s41565-021-00948-7)
Milescu, L. S., Yildiz, A., Selvin, P. R. & Sachs, F. Maximum likelihood estimation of molecular motor kinetics from staircase dwell-time sequences. Biophys. J. 91, 1156–1168 (2006). (PMID: 16679362151864910.1529/biophysj.105.079541)
Kinz-Thompson, C. D., Bailey, N. A. & Gonzalez, R. L. Jr. Precisely and accurately inferring single-molecule rate constants. Methods Enzymol. 581, 187–225 (2016). (PMID: 27793280574687510.1016/bs.mie.2016.08.021)
Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016). (PMID: 10.1038/natrevmats.2016.2)
Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019). (PMID: 10.1038/s42254-019-0022-x)
Perrin, M. L., Burzurí, E. & van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015). (PMID: 2531076710.1039/C4CS00231H)
Wang, K. DNA-based single-molecule electronics: from concept to function. J. Funct. Biomater. 9, 8 (2018). (PMID: 29342091587209410.3390/jfb9010008)
Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 69, 140–143 (1992). (PMID: 1004620910.1103/PhysRevLett.69.140)
Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997). (PMID: 10.1126/science.278.5336.252)
Agraı̈t, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003). (PMID: 10.1016/S0370-1573(02)00633-6)
Kim, T., Liu, Z.-F., Lee, C., Neaton Jeffrey, B. & Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Natl Acad. Sci. USA 111, 10928–10932 (2014). (PMID: 25024198412181110.1073/pnas.1406926111)
Zhang, Q. et al. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 16, 6534–6540 (2016). (PMID: 2766851810.1021/acs.nanolett.6b03180)
Zhao, S. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 6, eaba6714 (2020). (PMID: 32524003725993010.1126/sciadv.aba6714)
Tian, J.-H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006). (PMID: 1710525210.1021/ja0648615)
Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 30, 2000615 (2020). (PMID: 10.1002/adfm.202000615)
Guo, C. et al. Molecular orbital gating surface-enhanced Raman scattering. ACS Nano 12, 11229–11235 (2018). (PMID: 3033594010.1021/acsnano.8b05826)
Takeuchi, Y. et al. Nuclear magnetic resonance spectra of organogermanium compounds. Part 4. Nuclear magnetic resonance spectra and molecular mechanics calculations of germacyclohexane, methylgermacyclohexanes, and dimethylgermacyclohexanes. J. Chem. Soc. Perkin Trans. 2 1988, 7–13 (1988). (PMID: 10.1039/p29880000007)
Jonsdottir, N. R., Kvaran, Á., Jonsdottir, S., Arnason, I. & Bjornsson, R. Conformational properties of 1-methyl-1-germacyclohexane: low-temperature NMR and quantum chemical calculations. Struct. Chem. 24, 769–774 (2013). (PMID: 10.1007/s11224-013-0214-4)
Tang, C. et al. Identifying the conformational isomers of single-molecule cyclohexane at room temperature. Chem 6, 2770–2781 (2020). (PMID: 10.1016/j.chempr.2020.07.024)
Bléger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015). (PMID: 10.1002/anie.201500628)
Yin, T.-T., Zhao, Z.-X. & Zhang, H.-X. Theoretical study of the cis–trans isomerization mechanism of a pendant metal-bound azobenzene. RSC Adv. 6, 79879–79889 (2016). (PMID: 10.1039/C6RA10880F)
van Zalinge, H. et al. Variable‐temperature measurements of the single‐molecule conductance of double‐stranded DNA. Angew. Chem. Int. Ed. 118, 5625–5628 (2006). (PMID: 10.1002/ange.200601263)
Dulić, D. et al. Direct conductance measurements of short single DNA molecules in dry conditions. Nanotechnology 20, 115502 (2009). (PMID: 1942044010.1088/0957-4484/20/11/115502)
Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003). (PMID: 1294719310.1126/science.1087481)
Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006). (PMID: 1692929510.1038/nature05037)
Schwarzenbach, H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 15, 211 (2013). (PMID: 24090167397869610.1186/bcr3446)
Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011). (PMID: 2156258010.1038/nrc3066)
Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016). (PMID: 10.1002/anie.201600495)
Choi, S., Goryll, M., Sin, L. Y. M., Wong, P. K. & Chae, J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid. Nanofluid. 10, 231–247 (2011). (PMID: 3221495110.1007/s10404-010-0638-8)
Akkilic, N., Geschwindner, S. & Höök, F. Single-molecule biosensors: recent advances and applications. Biosens. Bioelectron. 151, 111944 (2020). (PMID: 3199957310.1016/j.bios.2019.111944)
Li, Y. et al. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol. 13, 1167–1173 (2018). (PMID: 3039728610.1038/s41565-018-0285-x)
Hu, Y. et al. Determination of Ag(I) and NADH using single-molecule conductance ratiometric probes. ACS Sens. 6, 461–469 (2021). (PMID: 3332621510.1021/acssensors.0c02038)
Taniguchi, M. et al. High-precision single-molecule identification based on single-molecule information within a noisy matrix. J. Phys. Chem. C 123, 15867–15873 (2019). (PMID: 10.1021/acs.jpcc.9b03908)
Komoto, Y. et al. Time-resolved neurotransmitter detection in mouse brain tissue using an artificial intelligence-nanogap. Sci Rep. 10, 11244 (2020). (PMID: 32647343734794110.1038/s41598-020-68236-3)
Yang, C., Qin, A., Tang, B. Z. & Guo, X. Fabrication and functions of graphene–molecule–graphene single-molecule junctions. Chem. Phys. 152, 120902 (2020).
Tian, J.-H. et al. Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. ChemPhysChem 11, 2745–2755 (2010). (PMID: 2073753110.1002/cphc.201000284)
Cao, Y., Dong, S., Liu, S., Liu, Z. & Guo, X. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed. 52, 3906–3910 (2013). (PMID: 10.1002/anie.201208210)
Sun, H. et al. Efficient fabrication of stable graphene–molecule–graphene single-molecule junctions at room temperature. ChemPhysChem 19, 2258–2265 (2018). (PMID: 2979738810.1002/cphc.201800220)
Gao, L. et al. Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 6, 2469–2473 (2015). (PMID: 26417425458319910.1039/C4SC03612C)
Carmi, N., Shultz, L. A. & Breaker, R. R. In vitro selection of self-cleaving DNAs. Chem. Biol. 3, 1039–1046 (1996). (PMID: 900001210.1016/S1074-5521(96)90170-2)
Carmi, N., Balkhi Shameelah, R. & Breaker Ronald, R. Cleaving DNA with DNA. Proc. Natl Acad. Sci. USA 95, 2233–2237 (1998). (PMID: 94828681930310.1073/pnas.95.5.2233)
Eberhardt, M. K., Colina, R. & Soto, K. The reaction of copper(I)–oxygen and copper(II)–ascorbic acid–oxygen with dimethyl sulfoxide. The effect of solvent. J. Org. Chem. 53, 1074–1077 (1988). (PMID: 10.1021/jo00240a026)
Xiang, Y., Li, Z., Chen, X. & Tong, A. Highly sensitive and selective optical chemosensor for determination of Cu 2+ in aqueous solution. Talanta 74, 1148–1153 (2008). (PMID: 1837176310.1016/j.talanta.2007.08.018)
Fang, Z. et al. Lateral flow nucleic acid biosensor for Cu 2+ detection in aqueous solution with high sensitivity and selectivity. Chem. Commun. 46, 9043–9045 (2010). (PMID: 10.1039/c0cc02782k)
Dujols, V., Ford, F. & Czarnik, A. W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997). (PMID: 10.1021/ja971221g)
Li, H., Huang, X. X., Kong, D. M., Shen, H. X. & Liu, Y. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu 2+ fluorescent sensor based on reconstructed Cu 2+ -dependent DNAzyme/substrate complex. Biosens. Bioelectron. 42, 225–228 (2013). (PMID: 2320809010.1016/j.bios.2012.10.070)
Liu, J. & Lu, Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu 2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129, 9838–9839 (2007). (PMID: 1764533410.1021/ja0717358)
Liu, Z. et al. A single-molecule electrical approach for amino acid detection and chirality recognition. Sci. Adv. 7, eabe4365 (2021). (PMID: 33658198792949810.1126/sciadv.abe4365)
Nunes, G. & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029 (1993). (PMID: 1778204910.1126/science.262.5136.1029)
Gu, C. et al. Label-free dynamic detection of single-molecule nucleophilic-substitution reactions. Nano Lett. 18, 4156–4162 (2018). (PMID: 2987445310.1021/acs.nanolett.8b00949)
Carrow, B. P. & Hartwig, J. F. Distinguishing between pathways for transmetalation in Suzuki−Miyaura reactions. J. Am. Chem. Soc. 133, 2116–2119 (2011). (PMID: 21280669304185310.1021/ja1108326)
Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki–Miyaura reaction revealed: the missing link. Science 352, 329–332 (2016). (PMID: 2708106810.1126/science.aad6981)
Lindsay, S. The promises and challenges of solid-state sequencing. Nat. Nanotechnol. 11, 109–111 (2016). (PMID: 26839253564025810.1038/nnano.2016.9)
Lindsay, S. et al. Recognition tunneling. Nanotechnology 21, 262001–262001 (2010). (PMID: 20522930289198810.1088/0957-4484/21/26/262001)
Chang, S. et al. Tunnel conductance of Watson–Crick nucleoside–base pairs from telegraph noise. Nanotechnology 20, 185102 (2009). (PMID: 19420603269495010.1088/0957-4484/20/18/185102)
Chang, S., He, J., Zhang, P., Gyarfas, B. & Lindsay, S. Gap distance and interactions in a molecular tunnel junction. J. Am. Chem. Soc. 133, 14267–14269 (2011). (PMID: 21838292336771710.1021/ja2067737)
Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012). (PMID: 10.1002/anie.201205607)
Zhou, C. et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 9, 807 (2018). (PMID: 29476061582517710.1038/s41467-018-03203-1)
Albrecht, T. Electrochemical tunnelling sensors and their potential applications. Nat. Commun. 3, 829 (2012). (PMID: 2256937310.1038/ncomms1791)
Zwolak, M. & Di Ventra, M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–424 (2005). (PMID: 1575508710.1021/nl048289w)
Di Ventra, M. & Taniguchi, M. Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11, 117–126 (2016). (PMID: 2683925710.1038/nnano.2015.320)
Chang, S. et al. Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–1075 (2010). (PMID: 20141183283618010.1021/nl1001185)
Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010). (PMID: 21076404412113010.1038/nnano.2010.213)
Fu, T., Zang, Y., Zou, Q., Nuckolls, C. & Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 20, 3320–3325 (2020). (PMID: 3224267110.1021/acs.nanolett.0c00198)
Im, J., Sen, S., Lindsay, S. & Zhang, P. Recognition tunneling of canonical and modified RNA nucleotides for their identification with the aid of machine learning. ACS Nano 12, 7067–7075 (2018). (PMID: 2993266810.1021/acsnano.8b02819)
Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006). (PMID: 1695956610.1016/j.cell.2006.08.019)
Parodi, A. J. Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000). (PMID: 1096645310.1146/annurev.biochem.69.1.69)
Lawson, C. J. & Rees, D. A. An enzyme for the metabolic control of polysaccharide conformation and function. Nature 227, 392–393 (1970). (PMID: 542844310.1038/227392a0)
Mariño, K., Bones, J., Kattla, J. J. & Rudd, P. M. A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010). (PMID: 2085260910.1038/nchembio.437)
Hofmann, J., Hahm, H. S., Seeberger, P. H. & Pagel, K. Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature 526, 241–244 (2015). (PMID: 2641672710.1038/nature15388)
Nagy, G. & Pohl, N. L. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal. Chem. 87, 4566–4571 (2015). (PMID: 2582667110.1021/acs.analchem.5b00760)
Im, J. et al. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 7, 13868 (2016). (PMID: 28000682518758110.1038/ncomms13868)
Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings Bioinf. 19, 286–302 (2016). (PMID: 10.1093/bib/bbw114)
Boonen, K. et al. Beyond genes: re-identifiability of proteomic data and its implications for personalized medicine. Genes 10, 682 (2019). (PMID: 31492022677096110.3390/genes10090682)
Lu, X., Nicovich, P. R., Gaus, K. & Gooding, J. J. Towards single molecule biosensors using super-resolution fluorescence microscopy. Biosens. Bioelectron. 93, 1–8 (2017). (PMID: 2782956510.1016/j.bios.2016.10.048)
Timp, W. & Timp, G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 6, eaax8978 (2020). (PMID: 31950079695405810.1126/sciadv.aax8978)
Zhang, B. et al. Role of contacts in long-range protein conductance. Proc. Natl Acad. Sci. USA 116, 5886–5891 (2019). (PMID: 30846548644260910.1073/pnas.1819674116)
Zhang, B. et al. Engineering an enzyme for direct electrical monitoring of activity. ACS Nano 14, 1360–1368 (2020). (PMID: 3159430410.1021/acsnano.9b06875)
Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014). (PMID: 24705512404717310.1038/nnano.2014.54)
Walkey, M. C. et al. Chemically and mechanically controlled single-molecule switches using spiropyrans. ACS Appl. Mater. Interfaces 11, 36886–36894 (2019). (PMID: 3152249210.1021/acsami.9b11044)
Darwish, N., Foroutan-Nejad, C., Domulevicz, L., Hihath, J. & Díez-Pérez, I. in Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry (eds Shaik, S. & Stuyver, T.) 147–194 (Royal Society of Chemistry, 2021).
Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I. & Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chem. Soc. Rev. 47, 5146–5164 (2018). (PMID: 2994739010.1039/C8CS00352A)
Darwish, N., Aragonès, A. C., Darwish, T., Ciampi, S. & Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 14, 7064–7070 (2014). (PMID: 2541998610.1021/nl5034599)
Aragonès, A. C. et al. Highly conductive single-molecule wires with controlled orientation by coordination of metalloporphyrins. Nano Lett. 14, 4751–4756 (2014). (PMID: 2497858710.1021/nl501884g)
Ponce, I. et al. Building nanoscale molecular wires exploiting electrocatalytic interactions. Electrochim. Acta 179, 611–617 (2015). (PMID: 10.1016/j.electacta.2015.03.150)
Beedle, A. E. M., Lezamiz, A., Stirnemann, G. & Garcia-Manyes, S. The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins. Nat. Commun. 6, 7894 (2015). (PMID: 2623528410.1038/ncomms8894)
De, Bo,G. Mechanochemistry of the mechanical bond. Chem. Sci. 9, 15–21 (2018). (PMID: 10.1039/C7SC04200K)
Meir, R., Chen, H., Lai, W. & Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11, 301–310 (2010). (PMID: 1999840210.1002/cphc.200900848)
Wang, Z., Danovich, D., Ramanan, R. & Shaik, S. Oriented-external electric fields create absolute enantioselectivity in Diels–Alder reactions: importance of the molecular dipole moment. J. Am. Chem. Soc. 140, 13350–13359 (2018). (PMID: 3023287710.1021/jacs.8b08233)
Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016). (PMID: 2787486910.1038/nchem.2651)
Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020). (PMID: 3255157110.1021/jacs.0c05128)
Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016). (PMID: 2693569710.1038/nature16989)
Zang, Y. et al. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 10, 4482 (2019). (PMID: 31578333677513010.1038/s41467-019-12487-w)
Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021). (PMID: 3711818310.1038/s41570-021-00316-y)
Makk, P. et al. Correlation analysis of atomic and single-molecule junction conductance. ACS Nano 6, 3411–3423 (2012). (PMID: 2239739110.1021/nn300440f)
Adak, O. et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 15, 4143–4149 (2015). (PMID: 2594244110.1021/acs.nanolett.5b01270)
Martin, L. J., Akhavan, B. & Bilek, M. M. M. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat. Commun. 9, 357 (2018). (PMID: 29367659578393610.1038/s41467-017-02545-6)
Emaminejad, S. et al. Tunable control of antibody immobilization using electric field. Proc. Natl Acad. Sci. USA 112, 1995–1999 (2015). (PMID: 25650429434313210.1073/pnas.1424592112)
Nadappuram, B. P. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80–88 (2019). (PMID: 3051028010.1038/s41565-018-0315-8)
Ghomian, T. et al. High-throughput dielectrophoretic trapping and detection of DNA origami. Adv. Mater. Interfaces 8, 2001476 (2021). (PMID: 10.1002/admi.202001476)
Tang, L. et al. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 12, 913 (2021). (PMID: 33568635787603010.1038/s41467-021-21101-x)
Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020). (PMID: 10.1016/j.matt.2020.07.019)
Rascón-Ramos, H., Artés, J. M., Li, Y. & Hihath, J. Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 14, 517–522 (2015). (PMID: 2568626310.1038/nmat4216)
Pla-Vilanova, P. et al. The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology 26, 381001 (2015). (PMID: 2631448610.1088/0957-4484/26/38/381001)
Darwish, N. et al. Reversible potential-induced structural changes of alkanethiol monolayers on gold surfaces. Electrochem. Commun. 13, 387–390 (2011). (PMID: 10.1016/j.elecom.2011.01.025)
Peiris, C. R. et al. Spontaneous S–Si bonding of alkanethiols to Si(111)–H: towards Si–molecule–Si circuits. Chem. Sci. 11, 5246–5256 (2020). (PMID: 34122981815931310.1039/D0SC01073A)
Dief, E. M. & Darwish, N. Ultrasonic generation of thiyl radicals: a general method of rapidly connecting molecules to a range of electrodes for electrochemical and molecular electronics applications. ACS Sens. 6, 573–580 (2021). (PMID: 3335546010.1021/acssensors.0c02413)
Dief, E. M., Brun, A. P. L., Ciampi, S. & Darwish, N. Spontaneous grafting of OH-terminated molecules on Si−H surfaces via Si–O–C covalent bonding. Surfaces 4, 81–88 (2021). (PMID: 10.3390/surfaces4010010)
Dief, E. M. et al. Covalent linkages of molecules and proteins to Si–H surfaces formed by disulfide reduction. Langmuir 36, 14999–15009 (2020). (PMID: 3327101710.1021/acs.langmuir.0c02391)
Dief, E. M. & Darwish, N. Electrochemically fabricated molecule–electrode contacts for molecular electronics. Curr. Opin. Electrochem. 34, 101019 (2022). (PMID: 10.1016/j.coelec.2022.101019)
Dief, E. M. et al. Covalent linkages of molecules and proteins to Si−H surfaces formed by disulfide reduction. Langmuir 36, 14999–15009 (2020). (PMID: 3327101710.1021/acs.langmuir.0c02391)
Peiris, C. R. et al. Metal–single-molecule–semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 141, 14788–14797 (2019). (PMID: 3145507610.1021/jacs.9b07125)
Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018). (PMID: 2997945610.1039/C8CS00354H)
Substance Nomenclature: 9007-49-2 (DNA)
0 (Proteins)
63231-63-0 (RNA)
Entry Date(s): Date Created: 20230427 Date Completed: 20230508 Latest Revision: 20230607
Update Code: 20230607
DOI: 10.1038/s41557-023-01178-1
PMID: 37106094
Database: MEDLINE