Academic Journal

Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges.

Bibliographic Details
Title: Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges.
Authors: Lolaico M; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden., Blokhuizen S; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden., Shen B; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.; Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16100, 00076 Aalto, Finland., Wang Y; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden., Högberg B; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
Source: ACS nano [ACS Nano] 2023 Apr 11; Vol. 17 (7), pp. 6565-6574. Date of Electronic Publication: 2023 Mar 23.
Publication Type: Journal Article; Research Support, Non-U.S. Gov't
Language: English
Journal Info: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101313589 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-086X (Electronic) Linking ISSN: 19360851 NLM ISO Abbreviation: ACS Nano Subsets: MEDLINE
Imprint Name(s): Original Publication: Washington D.C. : American Chemical Society
MeSH Terms: Nanotechnology*/methods , Nanostructures*/chemistry, Nucleic Acid Conformation ; DNA/chemistry ; Computer-Aided Design
Abstract: In recent years, interest in wireframe DNA origami has increased, with different designs, software, and applications emerging at a fast pace. It is now possible to design a wide variety of shapes by starting with a 2D or 3D mesh and using different scaffold routing strategies. The design choices of the edges in wireframe structures can be important in some applications and have already been shown to influence the interactions between nanostructures and cells. In this work, we increase the alternatives for the design of A-trail routed wireframe DNA structures by using four-helix bundles (4HB). Our approach is based on the incorporation of additional helices to the edges of the wireframe structure to create a 4HB on a square lattice. We first developed the software for the design of these structures, followed by a demonstration of the successful design and folding of a library of structures, and then, finally, we investigated the higher mechanical rigidity of the reinforced structures. In addition, the routing of the scaffold allows us to easily incorporate these reinforced edges together with more flexible, single helix edges, thereby allowing the user to customize the desired stiffness of the structure. We demonstrated the successful folding of this type of hybrid structure and the different stiffnesses of the different parts of the nanostructures using a combination of computational and experimental techniques.
References: Nat Nanotechnol. 2019 Feb;14(2):184-190. (PMID: 30643273)
ACS Nano. 2019 Nov 26;13(11):12591-12598. (PMID: 31613092)
J Comput Chem. 2015 Jan 5;36(1):1-8. (PMID: 25355527)
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):8869-72. (PMID: 27304204)
Chem Sci. 2012 Aug 1;3(8):2587-2597. (PMID: 24653832)
Nat Commun. 2020 Nov 13;11(1):5768. (PMID: 33188187)
Nucleic Acids Res. 2020 Jul 9;48(12):e72. (PMID: 32449920)
Science. 2016 Jun 24;352(6293):1534. (PMID: 27229143)
Nature. 2006 Mar 16;440(7082):297-302. (PMID: 16541064)
Source Code Biol Med. 2014 Jul 10;9:16. (PMID: 25093038)
Nat Commun. 2022 Jul 28;13(1):3182. (PMID: 35902570)
Nanotechnology. 2020 Mar 20;31(23):235605. (PMID: 32125281)
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9345-9350. (PMID: 33452744)
Nature. 2009 May 21;459(7245):414-8. (PMID: 19458720)
Nat Biotechnol. 2018 Mar;36(3):258-264. (PMID: 29431737)
Nucleic Acids Res. 2021 Jul 2;49(W1):W491-W498. (PMID: 34009383)
Science. 2009 Aug 7;325(5941):725-30. (PMID: 19661424)
Nano Lett. 2011 Dec 14;11(12):5558-63. (PMID: 22047401)
Nat Nanotechnol. 2020 Aug;15(8):716-723. (PMID: 32601450)
Nucleic Acids Res. 2021 Oct 11;49(18):10265-10274. (PMID: 34508356)
Nature. 2015 Jul 23;523(7561):441-4. (PMID: 26201596)
Nanoscale. 2022 Nov 17;14(44):16467-16478. (PMID: 36305892)
Nat Commun. 2019 Nov 28;10(1):5419. (PMID: 31780654)
Sci Adv. 2019 Jan 04;5(1):eaav0655. (PMID: 30613779)
Nat Commun. 2015 Aug 25;6:8102. (PMID: 26303016)
Nano Lett. 2009 Jun;9(6):2445-7. (PMID: 19419184)
Sci Adv. 2018 Feb 02;4(2):eaap8978. (PMID: 29423446)
Nucleic Acids Res. 2022 Jan 7;50(D1):D246-D252. (PMID: 34747480)
J Comput Chem. 2019 Nov 5;40(29):2586-2595. (PMID: 31301183)
Nanoscale. 2019 Mar 14;11(11):4707-4711. (PMID: 30834915)
Nanoscale. 2022 Jul 14;14(27):9648-9654. (PMID: 35718875)
Nat Nanotechnol. 2015 Sep;10(9):779-84. (PMID: 26192207)
J Am Chem Soc. 2009 Nov 4;131(43):15903-8. (PMID: 19807088)
Chembiochem. 2017 Oct 5;18(19):1873-1885. (PMID: 28714559)
Nano Lett. 2016 Mar 9;16(3):2108-13. (PMID: 26883285)
Adv Mater. 2021 Jul;33(29):e2008457. (PMID: 34096116)
ACS Nano. 2012 Oct 23;6(10):8684-91. (PMID: 22950811)
ACS Nano. 2021 Jun 22;15(6):9614-9626. (PMID: 34019379)
Science. 2012 Feb 17;335(6070):831-4. (PMID: 22344439)
ACS Nano. 2018 Sep 25;12(9):9291-9299. (PMID: 30188123)
ACS Nano. 2019 Feb 26;13(2):2083-2093. (PMID: 30605605)
Nat Protoc. 2022 Aug;17(8):1762-1788. (PMID: 35668321)
Nat Commun. 2019 Mar 6;10(1):1067. (PMID: 30842408)
Nucleic Acids Res. 2009 Aug;37(15):5001-6. (PMID: 19531737)
Contributed Indexing: Keywords: DNA nanotechnology; coarse-grained molecular dynamics; four-helix bundle; scaffolded DNA origami; wireframe origami
Substance Nomenclature: 9007-49-2 (DNA)
Entry Date(s): Date Created: 20230323 Date Completed: 20230412 Latest Revision: 20230417
Update Code: 20230417
PubMed Central ID: PMC10100577
DOI: 10.1021/acsnano.2c11982
PMID: 36951760
Database: MEDLINE
Description
ISSN:1936-086X
DOI:10.1021/acsnano.2c11982