Saltar al contenido
VuFind
    • English
    • Español
Avanzado
La página se recargará cuando se elimine un filtro. Restablecer filtros
Filtros aplicados:
Autor: Eliminar filtro Rutherford, M.
La página se recargará cuando se elimine un filtro.
Restablecer filtros
Mostrar filtros (1)
Autor: Eliminar filtro Rutherford, M.
  • Canales
Buscar más canales:

Autor: Song, Chun

  • Autor: Petsakos, Athanasios
  • Autor: Cenacchi, Nicola
  • Autor: Chamberlin, Jordan
  • Autor: Diao, Xinshen
  • Autor: Gebrekidan, Bisrat
  • Autor: Ghosh, Aniruddha
  • Autor: Gonzalez, Carlos
  • Autor: Guo, Zhe
  • Autor: Laporte, Marie-Angelique
  • Autor: Lenaerts, Bert
  • Autor: Mbabazi, Gloria
  • Autor: Mishra, Abhijeet
  • Autor: Mkondiwa, Maxwell
  • Autor: Mwungu, Chris
  • Autor: Ng'ethe, Regina
  • Autor: Otieno, Felix
  • Autor: Pede, Valerian
  • Autor: Robertson, Richard D.
  • Autor: Thomas, Tim
  • Autor: Waithera, Regina
  • Autor: Wango, Virginiah
  • Autor: Wanjau, Agnes
  • Autor: You, Liangzhi
  • Autor: Zhou, Shuang
  • Mostrar ítemes como resultados de búsqueda
  • Explorar canales relacionados
  • Vista rápida
    Spatial downscaling of future food demand
  • Vista rápida
    Fine-tuned AI for tracking policy demands and studies
  • Vista rápida
    Advanced spatial analytics for policy support: Use cases from One CGIAR
  • Vista rápida
    Nourishing Kenya’s youth: A spatial analysis of demographic change and food demand
  • Vista rápida
    Human–AI collaboration for policy analysis in food land and water systems. A brief review of recent development
  • Vista rápida
    Using future food demand estimates to inform food policy planning in Kenya

Autor: Gotor, Elisabetta

  • Autor: Petsakos, Athanasios
  • Autor: Cenacchi, Nicola
  • Autor: Chamberlin, Jordan
  • Autor: Diao, Xinshen
  • Autor: Gebrekidan, Bisrat
  • Autor: Ghosh, Aniruddha
  • Autor: Gonzalez, Carlos
  • Autor: Guo, Zhe
  • Autor: Laporte, Marie-Angelique
  • Autor: Lenaerts, Bert
  • Autor: Mbabazi, Gloria
  • Autor: Mishra, Abhijeet
  • Autor: Mkondiwa, Maxwell
  • Autor: Mwungu, Chris
  • Autor: Ng'ethe, Regina
  • Autor: Otieno, Felix
  • Autor: Pede, Valerian
  • Autor: Robertson, Richard D.
  • Autor: Thomas, Tim
  • Autor: Waithera, Regina
  • Autor: Wango, Virginiah
  • Autor: Wanjau, Agnes
  • Autor: You, Liangzhi
  • Autor: Zhou, Shuang
  • Mostrar ítemes como resultados de búsqueda
  • Explorar canales relacionados
  • Vista rápida
    Spatial downscaling of future food demand
  • Vista rápida
    Advanced spatial analytics for policy support: Use cases from One CGIAR
  • Vista rápida
    Using future food demand estimates to inform food policy planning in Kenya

Ejemplares similares: Spatial downscaling of future food demand

  • Ejemplares similares: Advanced spatial analytics for policy support: Use cases from One CGIAR
  • Ejemplares similares: Nourishing Kenya’s youth: A spatial analysis of demographic change and food de...
  • Ejemplares similares: Human–AI collaboration for policy analysis in food land and water systems. A...
  • Ejemplares similares: Using future food demand estimates to inform food policy planning in Kenya
  • Ver registro
  • Explorar canales relacionados
  • Vista rápida
    Using future food demand estimates to inform food policy planning in Kenya
  • Vista rápida
    Nourishing Kenya’s youth: A spatial analysis of demographic change and food demand
  • Vista rápida
    Spatial downscaled future food demand V1
  • Vista rápida
    Integrating agrobiodiversity into foresight models
  • Vista rápida
    Unraveling the spatial patterns of water conflicts in Africa through a multi-scale lens
  • Vista rápida
    Advanced spatial analytics for policy support: Use cases from One CGIAR
  • Vista rápida
    How to apply spatial K-mean clustering method for informing policy planning
  • Vista rápida
    Quantifying the contribution of mangroves to local fish consumption in Indonesia: a cross-sectional spatial analysis
  • Vista rápida
    Fine-tuned AI for tracking policy demands and studies
  • Vista rápida
    Spatial sampling in data collection and impact assessment: overview and recent MELIA applications
  • Vista rápida
    Spatial typology for food system analysis: Taking stock and setting a research agenda
  • Vista rápida
    Leveraging spatial econometrics for enhanced impact assessment: Insights from agricultural innovation
  • Vista rápida
    What do we know about the future of agrobiodiversity in relation to food systems?
  • Vista rápida
    Spatial equilibrium model for AGRODEP
  • Vista rápida
    Human–AI collaboration for policy analysis in food land and water systems. A brief review of recent development
  • Vista rápida
    Policy response options to crop disease epidemics: The case of Cassava Brown Streak Disease (CBSD) in Southeast Asia
  • Vista rápida
    Un modele d'equilibre spatial pour AGRODEP
  • Vista rápida
    Food security in developing countries: Gender and spatial interactions
  • Vista rápida
    Spatial regression analysis of deforestation in Santa Cruz, Bolivia
  • Vista rápida
    Agroforestry in the Netherlands and China: A comparative review for identifying collaboration towards shared opportunities
  • Vista rápida
    A spatial typology of agricultural productivity in Sub-Saharan Africa
  • Vista rápida
    Structural shifts in food basket composition of rural and urban Philippines: Implications for the food supply system
  • Vista rápida
    Spatial Metadata: Guidelines and Procedures
  • Vista rápida
    Spatial analysis and characteristics of pig farming in Thailand

Ejemplares similares: Fine-tuned AI for tracking policy demands and studies

  • Ejemplares similares: Advanced spatial analytics for policy support: Use cases from One CGIAR
  • Ejemplares similares: Nourishing Kenya’s youth: A spatial analysis of demographic change and food de...
  • Ejemplares similares: Human–AI collaboration for policy analysis in food land and water systems. A...
  • Ejemplares similares: Using future food demand estimates to inform food policy planning in Kenya
  • Ver registro
  • Explorar canales relacionados
  • Vista rápida
    Hybrid-AI and Model Ensembling to Exploit UAV-Based RGB Imagery: An Evaluation of Sorghum Crop’s Nitrogen Content
  • Vista rápida
    Unlocking the Potential of AI in Agricultural Research: Insights from ICRISAT’s Sensitization Workshop and Survey Findings
  • Vista rápida
    Economic AI on the move: the relationship between sugar-sweetened beverages consumption and weight gain in Kyrgyzstan
  • Vista rápida
    Modelling agricultural drought: a review of latest advances in big data technologies
  • Vista rápida
    Ground reference dataset for crop type mapping and monitoring in four districts of Rwanda
  • Vista rápida
    Mining the gaps:using machine learning to map a million data points from agricultural research from the global south
  • Vista rápida
    Foodgravity: understand food flows using classic gravity model and explainable artificial intelligence techniques
  • Vista rápida
    Explainable machine learning driven nutrient recommendation for maize production in Malawi
  • Vista rápida
    ICRISAT and Partners Launch AI-Powered Climate Advisory Initiative to Boost Farmer Resilience
  • Vista rápida
    Video based deep learning deciphers honeybee waggle dances in natural conditions
  • Vista rápida
    Demand intelligence: an extended descriptor report for sub-indicators
  • Vista rápida
    Tracking Rangeland Degradation from Prosopis Invasion in Kenyan Rangeland: A Multi-Source Approach Combining Remote Sensing, Machine Learning and Citizen Science
  • Vista rápida
    Considerations and Practical Applications for Using Artificial Intelligence (AI) in Evaluations
  • Vista rápida
    Potenciando la investigación agrícola con modelos de inteligencia artificial
  • Vista rápida
    Demand intelligence portal - annotated wireframe documentation
  • Vista rápida
    The progression in developing genomic resources for crop improvement
  • Vista rápida
    EXGEP: a framework for predicting genotype-by-environment interactions using ensembles of explainable machine-learning models
  • Vista rápida
    Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction
  • Vista rápida
    Estimating and understanding crop yields with explainable deep learning in the Indian wheat belt
  • Vista rápida
    Navigating salinity challenges in the polders of coastal Bangladesh: AI-based advisories for farmers and water managers
  • Vista rápida
    Unleashing the potential of underutilized datasets to improve agricultural decision-making through comprehensive data analysis: An example of rice crop manager (RCM) dataset
  • Vista rápida
    Artificial intelligence-based biomonitoring of water quality
  • Vista rápida
    AI-powered banana diseases and pest detection
  • Vista rápida
    Croppie: AI-powered information extraction from natural language

© Copyright 2026, Todos los Derechos Reservados UNA