Search Results - Takai, T
- Showing 1 - 14 results of 14
-
Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.) by Takai, T., Fukuta, Y., Shiraiwa, T., Horie, T.
Published 2005Get full text
Journal Article -
Detection of a quantitative trait locus controlling carbon isotope discrimination and its contribution to stomatal conductance in japonica rice by Takai, Toshiyuki, Ohsumi, Akihiro, San-oh, Yumiko, Laza, Ma. Rebecca C., Kondo, Motohiko, Yamamoto, Toshio, Yano, Masahiro
Published 2009Get full text
Journal Article -
Development and evaluation of pyramiding lines carrying early or late heading QTLs in the indica rice cultivar ‘IR64’ by Takai, Toshiyuki, Lumanglas, Patrick, Fujita, Daisuke, Sasaki, Kazuhiro, Rakotoarisoa, Njato Michael, Tsujimoto, Yasuhiro, Kobayashi, Nobuya, Simon, Eliza Vie
Published 2021Get full text
Journal Article -
Robustness of the RGB image-based estimation for rice above-ground biomass by utilizing the dataset collected across multiple locations by Nakajima, Kota, Saito, Kazuki, Tsujimoto, Yasuhiro, Takai, Toshiyuki, Mochizuki, Atsushi, Yamaguchi, Tomoaki, Ibrahim, Ali, Mairoua, Salifou Goube, Andrianary, Bruce Haja, Katsura, Keisuke, Tanaka, Yu
Published 2025Get full text
Journal Article -
Development of introgression lines of an Indica-type rice variety, IR64, for unique agronomic traits and detection of the responsible chromosomal regions by Fujita, Daisuke, Santos, Rizza E., Ebron, Leodegario A., Telebanco-Yanoria, Mary J., Kato, Hiroshi, Kobayashi, Sohei, Uga, Yusaku, Araki, Etsuko, Takai, Toshiyuki, Tsunematsu, Hiroshi, Imbe, Tokio, Khush, Gurdev S., Brar, Darshan S., Fukuta, Yoshimichi, Kobayashi, Nobuya
Published 2009Get full text
Journal Article -
Characterization of introgression lines for yield-related traits with indica-type rice variety IR64 genetic background by Fujita, Daisuke, SANTOS, Rizza Eve M., Ebron, Leodegario A., TELEBANCO-YANORIA, Mary J., Kato, Hiroshi, Kobayashi, Sohei, Uga, Yusaku, Araki, Etsuko, Takai, Toshiyuki, TSUNEMATSU, Hiroshi, Imbe, Tokio, Khush, Gurdev S., Brar, Darshan S., Fukuta, Yoshimichi, Kobayashi, Nobuya
Published 2010Get full text
Journal Article -
Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions by Uga, Y., Sugimoto, K, Ogawa, Satoshi, Rane, Jagadish, Ishitani, Manabu, Hara, N, Kitomi, Y, Inukai, Y., Ono, K, Kanno, N, Inoue, H, Takehisa, H, Motoyama, R, Nagamura, Y, Wu, J., Matsumoto, T, Takai, T, Okuno, K, Yano, M.
Published 2013Get full text
Journal Article -
Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice by Ookawa, Taiichiro, Aoba, Ryo, Yamamoto, Toshio, Ueda, Tadamasa, Takai, Toshiyuki, Fukuoka, Shuichi, Ando, Tsuyu, Adachi, Shunsuke, Matsuoka, Makoto, Ebitani, Takeshi, Kato, Yoichiro, Mulsanti, Indria Wahyu, Kishii, Masahiro, Reynolds, Matthew, Piñera, Francisco, Kotake, Toshihisa, Kawasaki, Shinji, Motobayashi, Takashi, Hirasawa, Tadashi
Published 2016Get full text
Journal Article -
Deep learning-based estimation of rice yield using RGB image by Tanaka, Y, Watanabe, T., Katsura, K., Tsujimoto, Y., Takai, T., Tanaka, T., Kawamura, K., Saito, H., Homma, K., Mairoua, S., Ahouanton, K., Ibrahim, A., Senthilkumar, Kalimuthu, Semwal, V., Corredor, E., El-Namaky, R., Manigbas,N., Quilang, E.J.P., Iwahashi, Y., Nakajima, K., Takeuchi, E., Saito, Kazuki
Published 2021Get full text
Preprint -
Physiological and morphological characterization of a high-yielding rice introgression line, YTH183, with genetic background of Indica Group cultivar, IR 64 by Ishimaru, Tsutomu, Qin, Jianquan, Sasaki, Kazuhiro, Fujita, Daisuke, Gannaban, Ritchel B., Lumanglas, Patrick D., Simon, Eliza-Vie M., Ohsumi, Akihiro, Takai, Toshiyuki, Kondo, Motohiko, Collard, Bertrand, Rustini, Sri, Voradeth, Singty, Boualaphanh, Chanthakhone, Susanto, Untung, Hairmansis, Aris, Hayashi, Keiichi, Jagadish, Krishna S.V., Fukuta, Yoshimichi, Kobayashi, Nobuya
Published 2017Get full text
Journal Article -
Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images by Tanaka, Y., Watanabe, T., Katsura, K., Tsujimoto, Y., Takai, T., Tanaka, T.S.T., Kawamura, K., Saito, H., Homma, K., Ahouanton, K., Ibrahim, A., Senthilkumar, K., Semwal, V.K., Matute, E.J.G., Corredor, E., El-Namaky, R., Manigbas, N., Quilang, E.J.P., Iwahashi, Y., Nakajima, K., Takeuchi, E., Saito, K., Mairoua, S.G.
Published 2023Get full text
Journal Article